Yunmei Liu, Joseph Berman, Albert Dodson, Junho Park, Maryam Zahabi, He Huang, Jaime Ruiz, and David B. Kaber. IEEE Transactions on Human-Machine Systems: 1-11.
CHS: Medium: Collaborative Research: Electromyography (EMG)- based Assistive Human-Machine Interface Design: Cognitive Workload and Motor Skill Learning AssessmentPI: David Kaber Co-PIs: Jaime Ruiz
Over 100,000 people in the United States have upper limb amputations. Such amputations are usually associated with substantial disabilities. Activities of daily living may no longer be possible or require additional effort and time. To restore functional ability as fully as possible, amputee patients use upper-limb prostheses controlled by Electromyography (EMG)-based human-machine interfaces (HMIs). However, over 50% of prosthetic users report device dissatisfaction and abandonment due to frustration in use. In order to increase accessibility and utility of EMG-based assistive HMIs, it is critical to investigate the cognitive workload associated with using these systems for supporting motor skill rehabilitation and activities of daily living. In addition, with differences in individual muscle make-up and control, it is necessary to customize EMG-based assistive HMIs to particular patient conditions. However, at this time, there exists little to no general guidance on what interface control features may be more or less conducive to supporting learning and performance of psychomotor tasks. By testing various control interface prototypes in a validated motor skill learning simulation as well as high-demand, real-time tasks, specifically simulated driving, the investigators seek to provide design guidance for engineers to develop EMG-based assistive HMI technologies for various applications. This project also provides education and training for young industrial, computer science, and biomedical engineering students in assistive technology design and development.
The technical aims of the project are divided into three thrusts including (1) identifying cognitive load costs of EMG-based HMIs using computational cognitive performance models and machine learning algorithms – The developed cognitive workload models will be used for predicting learning potential and performance outcomes of variations of control interface designs, (2) demonstrating fundamental motor skill training through integration of the EMG-based HMI with virtual reality (VR) simulations – In particular, the investigators are interested in assessing whether the difference in cognitive load of using EMG-based HMIs translates to variations in learning potential and retention of psychomotor task skills, (3) translating fundamental motion components trained in the VR psychomotor test to a real-world application by demonstrating the possibility of operational driving control with an EMG-based HMI in a high-fidelity driving simulator – This thrust provides empirical validation for the findings regarding differences in cognitive load of using EMG-based HMIs, as well as the potential for increased learning and operational task performance.
Related Projects
Electromyography (EMG)-based Assistive Virtual Reality Human-Machine Interface
Related Projects
2023, Ergonomics, DOI: 10.1080/00140139.2023.2221413
Junho Park, Austin Music, Daniel Delgado, Joseph Berman, Albert Dodson, Yunmei Liu, Jaime Ruiz, He Huang, David Kaber, and Maryam Zahabi. 2023. Cognitive Workload and Usability of Virtual Reality Simulation for Prosthesis Training. In 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 1567–1572.
Junho Park, Joseph Berman, Albert Dodson, Yunmei Liu, Armstrong Matthew, He Huang, David Kaber, Jaime Ruiz, and Maryam Zahabi. In 2022 IEEE 3rd International Conference on Human-Machine Systems (ICHMS), pp. 1-6. IEEE, 2022.
J. Park, M. Zahabi, D. Kaber, J. Ruiz and H. Huang, 2020 IEEE International Conference on Human-Machine Systems (ICHMS), Rome, Italy, 2020, pp. 1-4, doi: 10.1109/ICHMS49158.2020.9209553.

