
Article Type: Description (see Introduction for more detail)

MuCHEx: A Multimodal Conversational
Debugging Tool for Interactive Visual
Exploration of Hierarchical Object
Classification
Reza Shahriari, University of Florida, Gainesville, FL, 32608, USA

Yichi Yang, University of California, San Diego, La Jolla, CA, 92093, USA

Danish Nisar Ahmed Tamboli, University of Florida, Gainesville, FL, 32608, USA

Michael Perez, University of Florida, Gainesville, FL, 32608, USA

Yuheng Zha, University of California, San Diego, La Jolla, CA, 92093, USA

Jinyu Hou, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

Mingkai Deng, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

Eric D. Ragan, University of Florida, Gainesville, FL, 32608, USA

Jaime Ruiz, University of Florida, Gainesville, FL, 32608, USA

Daisy Zhe Wang, University of Florida, Gainesville, FL, 32608, USA

Zhitting Hu, University of California, San Diego, La Jolla, CA, 92093, USA

Eric Xing, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

Abstract—Object recognition is a fundamental challenge in computer vision,
particularly for fine-grained object classification, where classes differ in minor
features. Improved fine-grained object classification requires a teaching system
with numerous classes and instances of data. As the number of hierarchical levels
and instances grows, debugging these models becomes increasingly complex.
Moreover, different types of debugging tasks require varying approaches,
explanations, and levels of detail. We present MuCHEx, a multimodal
conversational system that blends natural language and visual interaction for
interactive debugging of hierarchical object classification. Natural language allows
users to flexibly express high-level questions or debugging goals without needing
to navigate complex interfaces, while adaptive explanations surface only the most
relevant visual or textual details based on the user’s current task. This multimodal
approach combines the expressiveness of language with the precision of direct
manipulation, enabling context-aware exploration during model debugging.

O bject recognition is a core challenge in com-
puter vision, encompassing two main tasks:
object instance recognition and object class

recognition [1]. However, most current systems strug-

XXXX-XXX © 2025 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

gle with object class recognition, like distinguishing
between specific breeds of animals rather than gen-
eral species, or identifying different models of vehicles
rather than just recognizing them as cars or trucks.
This complexity arises because real-world visual cate-
gories follow natural hierarchies with multiple levels of
detail.

Distinguishing between different classes, especially

Month Published by the IEEE Computer Society Publication Name 1

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2025.3598204

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2025 at 15:32:52 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

with only limited visual examples, can be challenging
even for humans. This is especially tough in fine-
grained hierarchical classification, where classes dif-
fer in minor features [2]. Models trained on limited
examples—common in few-shot learning scenarios—
often struggle with sparse data at deeper levels of the
hierarchy. Improved fine-grained object classification
requires a teaching system with numerous classes
and instances of data. Despite recent improvements in
methods and training strategies, these few-shot learn-
ing models are not perfect. Fixing issues related to mis-
classification at fine-grained hierarchical levels before
deployment is critical, as overlooked errors can prop-
agate misleading outputs. For instance, misidentify-
ing medical imagery or incorrectly categorizing safety-
critical equipment could lead to significant practical
consequences.

As the number of classes and instances grows,
the space of possible mistakes and explanations also
expands rapidly. Each class can be confused with
many others, and each instance might have unique
features or edge cases that require individualized at-
tention. This combinatorial explosion makes it harder
to systematically explore, identify, and correct errors,
leading to a much more complex and time-consuming
debugging process. Analysts must be able to query
and review both high-level classifications and low-level
segmentations or attributes, often across multiple ex-
amples. This creates a demand for flexible, task-driven
exploration where users can pursue different types of
inquiry and explanation depending on the task at hand.
For example, while correcting a misclassification may
only require reviewing accuracy scores and alternative
label candidates, understanding why the misclassi-
fication occurred demands deeper details, such as
identifying which essential attributes or segments were
present, missing, or misinterpreted in the instance.
Thus, our goal is to provide multi-scope explanations
and representations to support different task types that
help debuggers identify and understand error patterns.

Debugging classification models is inherently chal-
lenging because different types of errors often require
different approaches and levels of detail. Solely textual
outputs can limit a user’s ability to efficiently locate
errors in visual data, as they lack spatial context or
visual cues. However, purely visual interactions may
be ambiguous or insufficient for conveying underlying
statistical patterns or model rationales, especially when
precise numeric explanations are required. Natural lan-
guage input supports more natural communication by
allowing users to articulate debugging questions and
reasoning goals in their own words, while direct manip-
ulation offers precision and control—together enabling

more effective and flexible interaction during classifica-
tion debugging tasks [3]. In this paper, we present a
multimodal tool for exploratory debugging hierarchical
object classification that supports both textual and
visual output, and enables dual-mode interaction: (1)
natural language interaction for conversational query-
ing, and (2) direct manipulation of visual elements
such as image segments and concept hierarchies. The
interface (see Figure 1) integrates multiple coordinated
views: (A) a natural language chat interface, (B) a
concept visualization panel, and (C) image-based in-
teraction—to enable adaptive, task-driven exploration
of model behavior.

This paper makes two primary contributions: (1) We
introduce MuCHEx, a Multimodal Conversational De-
bugging Tool for Interactive Visual Exploration of Hier-
archical Object Classification, which integrates coordi-
nated views, natural language interaction, and adaptive
visual explanations to support model understanding
and error analysis; (2) We present the results of a
human-subjects study evaluating MuCHE’s effective-
ness in helping users identify and correct different
types of classification errors in a few-shot learning
scenario.

DESIGN GOALS
This research focuses on debugging hierarchical object
classification due to the challenges and similarities
of real-world objects along especially with limited ex-
amples seen by models. The presented application
combines multiple techniques to provide explanations
for model analysis and debugging of various types of
model issues. Explainable AI (XAI) strategies seek to
enhance transparency in a model’s decision-making
process. These explanations can help identify and
find the reason when the model makes errors [4].
Explanations for hierarchical cases involve the chal-
lenge of explaining relationships at different levels of
a hierarchy. We can consider animal classification as
an example; explaining animal differences can extend
to families, species, and subspecies. For instance,
distinguishing between African elephants and Asian
elephants—or even more specific contrasts between
African savannah and African forest elephants—might
be challenging for humans. Identifying and correcting
model errors would be even harder without the ability
to inspect or communicate the necessary differences
up or down a branch in the hierarchy, or it may involve
comparisons across multiple branches. We define a
set of three interdependent design goals that guide
the development of our interactive system, derived
through analysis of prior work [4], [5], [6], [7]. Ex-

2 Publication Title Month 2025

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2025.3598204

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2025 at 15:32:52 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

Show me examples of beagle dog

Examples are shown in media viewer

Essential Attributes of
Beagle DogEar

Show me essential attributes of beagle dog

Examples are shown in media viewerEssential Attributes of Pug Dog

FIGURE 1. Screenshots from the interface after executing user commands: Examples Viewer mode: displays representative
images of the predicted class; Comparison Viewer mode: shows side-by-side contrasts between candidate classes to support
comparison; Reasoning visual annotation: highlights visual evidence used by the model to support or reject predictions;

Essential Attributes mode: displays key part-level segments that are considered necessary for classification; Labeled
Diagram: overlays part names directly on the image to aid verifying segmentations

ploring classification behavior in hierarchical models
requires users to navigate between global overviews
of class structures and detailed, instance-level infor-
mation; managing these levels simultaneously can be
cognitively demanding and overwhelming. Coordinat-
ing them within a unified interface reduces this load
and improves task performance [5].

Furthermore, users engage in a variety of debug-
ging tasks, from querying model decisions to inspect-
ing visual features that benefit from flexible forms of
input. Relying solely on either natural language or
visual interaction restricts expressiveness and control,
whereas combining both modalities enables users to
articulate goals conversationally and manipulate visual
elements directly, improving efficiency and reducing
cognitive effort [6]. Finally, presenting all possible ex-
planations at once can overload users and hinder
effective analysis; adaptively surfacing only context-
relevant information helps maintain user focus and
supports better decision-making during model explo-
ration [7].

DG1. Supporting Multi-Level Exploration of In-
stance Details and Class Hierarchies As classification
models scale across hundreds of classes and hierar-
chical levels, understanding why a particular label was
assigned demands integrating both global (overview of
different class hierarchies, such as the breakdown of
animals into species) and local (instance-specific, such

as images of a boxer dog) views. A key challenge
is that users must juggle both global-level details,
such as navigating class hierarchies, and instance-
level information like label alternatives and confidence
scores for selected images. This often requires mul-
tiple steps across separate views to find the details
needed, increasing cognitive effort and making it easy
to lose track of previously examined details. To address
this, our design leverages multiple coordinated views
that synchronize explanations across different levels
and instances, and support interactive inspection of
data features, highlighting the predicted class in the
hierarchy, displaying confidence levels, and generat-
ing explanatory text in the chat interface. Studies of
multiple coordinated views demonstrate that linked
views improve task performance, reveal unforeseen re-
lationships, and reduce cognitive load when exploring
complex hierarchies [5]. Embedding these coordination
mechanisms in an XAI tool helps users detect errors
across large datasets.

In information visualization, annotations, such as
labels, highlights, or explanatory text, improve compre-
hension, engagement, and memory retention. When
tailored to specific analysis phases (e.g., data cleaning,
exploration, or error detection), they further enhance
users’ ability to identify and understand issues [8]. In
our setting, users often face challenges interpreting
segment-level labels across multiple instances, partic-

Month 2025 Publication Title 3

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2025.3598204

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2025 at 15:32:52 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

ularly when model predictions are fine-grained or am-
biguous. Because the model’s reasoning relies heavily
on image segmentation to identify class-defining re-
gions, it is crucial that users can assess the accu-
racy and alignment of these segments with semantic
concepts to verify and debug predictions. Also, we
provide explanations at the instance level by linking
multiple views: an overview radial tree, a detail-view
image panel, conversational chat box. Selection, filter,
or highlight in one view automatically propagates to
the others, letting users navigate between individual
edge cases (e.g., one misclassified image). This coor-
dination reduces context-switching and enables users
to locate and interpret model decisions from multiple
views immediately, as can be seen in Figure 1.

DG2. Enable Dual-Modal Interaction for Flexible
Exploration To support complex reasoning tasks during
model debugging, this design goal emphasizes the
use of dual-modal interaction by incorporating both
natural language (NL) and visual manipulation as input
modalities, and delivering both textual and visual forms
of output. This duality ensures that users can flexibly
express their goals and receive explanations in the
mode best suited to the task at hand. For example,
users who are unfamiliar with the system may prefer
to begin with natural language input (e.g., asking “Why
is this a boxer dog?”), allowing them to receive visual
explanations such as highlighted segments or hierar-
chy paths. In contrast, when users are dealing directly
with visual entities, such as image segments or classifi-
cation nodes, they are more likely to manipulate visual
elements directly such. Also, users prefer multimodal
interfaces over unimodal ones because they combine
the expressive freedom of natural-language input with
the precision and immediacy of direct manipulation,
due to their support of the freedom of natural language
expression and complementary nature of direct manip-
ulation [6]. We integrate direct manipulation—allowing
users to click, and receive immediate, reversible visual
feedback—with an embedded natural-language inter-
face for conversational queries (e.g., “Why is this a
boxer dog?” or “Compare beagle and boxer dogs.”)
as can be seen in Figure 1 and Figure 1 .
This combination lowers cognitive effort, accommo-
dates users with different expertise levels, and lets de-
buggers seamlessly switch between exploratory GUI-
based interaction and goal-driven questioning to debug
hierarchical classifications more efficiently.

DG3. Task-driven Debugging through Adaptive In-
formation Views This design goal focuses on support-
ing dynamic adaptation of views based on the user’s
current task and mode of interaction. Different inter-
actions, such as posing a natural language question,

clicking a segment, or selecting a class node indi-
cate different explanatory needs. Because the system
contains many layers of detail (e.g., class hierarchies,
confidence scores, segmentation masks, etc.), pre-
senting all information at once would be overwhelming
for users Instead, the system dynamically surfaces
only the most relevant explanations for the current
interaction, such as highlighting the class path when
asking “What is this?”, or visualizing attribute-level
differences when comparing classes while allowing
users to explore additional details on demand. Select-
ing dynamic and adaptive views that follow necessary
features maximizes the amount of information that can
be perceived throughout a sequence and improves
user task performance [7].

MODEL
Our concept learning system adopts a two-stage pro-
cess to learn object concepts. In the first stage, it iden-
tifies common part concepts across the dataset and
organizes them into a hierarchy. In the second stage,
it treats this part hierarchy as a concept bottleneck
layer [9] and learns the association between parts and
object-level concepts.

We choose to model part concepts as a hierarchy
since part concepts of different granularities are useful
for composing different types of object concepts. For
example, while the generic part concept “wheel” is
strongly associated with the concept “land vehicle”, a
more granular part “train wheel” is needed to represent
the more specific object “train”. Given a set of object
images {x1, x2, ... , xN}, to learn this part hierarchy in
an unsupervised fashion, we first decompose each
image xi into segmented parts {x (1)

i , x (2)
i , ... , x (Mi)

i } us-
ing a segmentation model. Next, we apply an online
hierarchical agglomerative clustering algorithm [10] to
cluster all part segments into a binary tree T based on
the DINO v2 representation [11] of the part segments.
The leaves of T are

⋃N
i=1{x (1)

i , x (2)
i , ... , x (Mi)

i }, all part
segments seen so far. Each subtree of T represents
a set of semantically similar part segments (e.g., dif-
ferent kinds of wheels), which can be interpreted as a
part concept. This results in a rich set of hierarchical
parts concepts that we can compose to define object
concepts.

In the second stage, the system learns how part
concepts are composed to form objects by fitting a
logistic regression classifier. Given the set of labeled
images {x1, x2, ... , xN} from |C| object categories, their
category labels {y1, y2, ... , yN}, and the part hierarchy
T learned in the first stage, we first featurize each
image as a |T | dimensional binary vector zi ∈ {0, 1}|T |

4 Publication Title Month 2025

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2025.3598204

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2025 at 15:32:52 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

based on if it contains part of each subtree in the
hierarchy. Then, following [12], [13], we fit a logistic
regression model to predict the labels yi with strong
ElasticNet regularization [14].

Concretely, given learnable weights Wϕ ∈ R|C|×|T |,
regularization strength λ, and ElasticNet ratio α, we
train the model to optimize the following objective:

min
Wϕ

1
N

N∑
i=1

CrossEntropyLoss(Wϕzi , yi) + λR(Wϕ)

where R(Wϕ) =
1
2

(1 − α)||Wϕ||22 + α||Wϕ||1

s.t. Wϕ ≥ 0 .

As strong regularization results in a sparse weight ma-
trix, and the non-negativity constraint restricts non-zero
entries to be positive, Wϕ can be easily interpreted
as representing each object concept (rows) as the
combination of a small set of part concepts (positive
columns).

We trained and evaluated the system on the
Cars [15], FGVC-Aircraft [16], and Oxford-IIIT Pet [17]
datasets. Images in these datasets are labeled with
hierarchical labels (e.g., images in Cars are annotated
with make and model). To support hierarchal clas-
sification, using the above objective, we trained one
logistic regression classifier for each parent node in
the hierarchy [18]. For instance, for the Cars dataset,
we trained one classifier to predict the make, and
one classifier per unique make to predict its models.
This decomposes hierarchal classification into a series
of multiclass classification problems and allows us to
learn the association between object and part concepts
at different levels of the hierarchy.

We evaluated the model in a few-shot learning set-
ting, where we sample n instances for each lowest level
class to train the model, and then test the model on the
test split. The results are shown in Table 1. The results
show that higher-level classifications (e.g., Make or
Type) consistently achieve higher accuracy, even in
the 1-shot setting—for example, Oxford’s Type reaches
over 94% with just one example. In contrast, lower-level
categories like Model, Variant, and Breed have much
lower 1-shot accuracy, highlighting the increased diffi-
culty of fine-grained classification. However, accuracy
for these fine-grained levels improves substantially with
more examples, demonstrating the benefit of few-shot
learning in reducing the performance gap.

To guide the system’s design and evaluation, we
conducted a preliminary error analysis of the model
outputs across several datasets mentioned in few-shot
settings. Our analysis showed that errors typically fell
into three distinct categories: (1) classification errors,

TABLE 1. Hierarchical classification accuracy with few shot
training across multiple datasets and different training shots
(n). Accuracy values presented as percentages. As expected,
accuracy improves with more training examples, highlighting
the benefits of few-shot learning. Higher-level categories (e.g.,
type or make) achieve relatively strong performance even with
limited data, while fine-grained classes (e.g., breed or model)
remain challenging, underscoring the difficulty of multiclass,
hierarchical classification.

Dataset Level
Class
Count

Accuracy (%)
1-shot 4-shot 16-shot

Cars [15]
Make 49 32.3 61.4 82.8
Model 196 12.9 36.5 65.5

FGVC
Aircraft [16]

Make 30 40.2 58.6 77.9
Model 70 23.5 41.6 63.2
Variant 100 14.9 29.3 48.7

Oxford
IIIT Pet [17]

Type 2 94.2 99.1 99.3
Breed 37 23.4 52.5 68.6

where the predicted label was incorrect at either the
coarse or fine-grained level; (2) segmentation errors,
where the system failed to correctly identify or locate
the key parts used for classification; and (3) essential
attribute errors, where the model incorrectly learned
spurious correlations (for example, treating background
artifacts as essential features).

SYSTEM DESIGN
To address our design challenges, we propose
MuCHEx, a multimodal tool that supports detecting the
reasoning of various explanations for object classifica-
tion. It enables users to fluidly navigate between visual
inspection and natural language dialogue, with tailored
responses that adapt to the selected element, task
type, or query. The web-based interface for MuCHEx is
implemented using HTML/CSS, Bootstrap (for styling
and responsive layout), jQuery, and D3.js (for all inter-
active visualizations).

Conversational Chat Box
The chat box serves as the natural-language interface
for the entire system. Users pose questions or com-
mands in free text (e.g., “Why is this a boxer dog?”),
and the backend replies in threaded dialogue. These
responses are context-aware and visually enriched,
incorporating elements like labeled thumbnails, color-
coded highlights, and ranked candidate labels to show
relevant evidence. This design turns each chat ex-
change into an entry point, where explanations are not
only textual but grounded in interactive visual elements
that the user can manipulate further. Depending on

Month 2025 Publication Title 5

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2025.3598204

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2025 at 15:32:52 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

Concept Visualization Panel

FIGURE 2. Screenshots illustrating different types of model errors investigated in the evaluation study. Classification error :
This instance is a Siamese cat, but the system incorrectly classified it as a Russian with low confidence. Segmentation error :
The system failed to detect the ear in the left column and the nose in the right column. Incorrect essential attributes: The
system incorrectly identifies a hair clip as essential for this breed, likely due to it appearing in all training examples, even though
it is not semantically relevant.

the query type, the system dynamically adjusts the
response format (DG3). For example, using side-by-
side thumbnails to explain fine-grained distinctions as
shown in Figure 1 The inclusion of text labels
on images supports faster interpretation and helps
users connect linguistic and visual information with
minimal effort. On demand, they can click to see the
full details if needed (DG1). This couples language
with imagery, letting users transition fluidly between
descriptive reasoning (“compare examples of. . . ”) and
exploratory follow-ups triggered by a single click on an
embedded thumbnail (DG2).

Moreover, a key feature of the chat interface is
the use of the keyword “this,” which refers to the cur-
rently selected object or part within the Media Viewer.
When users ask follow-up questions like “Why is this
a beagle?” or “What is this?”, the system anchors the
query to the specific visual element under inspection,
displaying a thumbnail next to the message for clarity.
This explicit linking between language and imagery es-
tablishes strong multimodal coordination and ensures
users never lose visual context during conversation-
driven interactions.

In addition, our system supports a diverse set of
natural-language commands, which can be grouped
into several categories:

• Descriptive queries (e.g., “What is this?”, “This
is a NAME.”) prompt the system to generate ex-
planations with candidate labels and confidence
levels.

• Comparative commands (e.g., “Compare exam-
ples of a beagle with a boxer ”) trigger side-by-
side image displays in the Media Viewer and

highlight distinguishing features in the Tree View,
with candidate accuracy shown via overlaid bar
charts.

• Exploratory commands (e.g., “Show me essen-
tial attributes of a truck ”) update the concept
visualization panel to show thumbnails of key
parts and segment names (Figure 1).

To implement supporting Natural Language, we
leveraged the ChatGPT API [19], specifically the “gpt-
3.5-turbo” model, to implement these features. Detailed
instructions are then sent to the ChatGPT API [19].
These prompts break down all possible operations and
include examples for each through few-shot prompt-
ing, thereby enhancing the model’s performance and
accuracy in understanding and executing user com-
mands. Each user input is processed through a mod-
ular prompt engineering pipeline that identifies the
user’s intent (e.g., comparison, description, attribute
search) and invokes corresponding UI updates, such
as modifying the media viewer, highlighting relevant
nodes in the tree, or surfacing contrasting examples.

Media Viewer
The Media Viewer serves as the central canvas for all
visual feedback. The Media Viewer adapts dynamically
to the user’s task and interaction context, serving as
a flexible visual workspace (DG3). For comparison
tasks, it presents images side by side to facilitate
visual differentiation between instances or classes. It
acts as the primary visual ground for contextualizing
model predictions, letting users inspect, compare, and
annotate visual features with minimal effort. Users can
directly interact with visual elements—selecting objects

6 Publication Title Month 2025

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2025.3598204

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2025 at 15:32:52 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

or specific parts within the image—to generate tar-
geted queries in the Conversational Chat Box (DG2).

In Examples Viewer mode (Figure 1), the Media
Viewer displays all instances from the predicted class.
This allows users to visually compare the current input
to a range of typical examples, helping them assess
how well the prediction matches known patterns for
that class. When needed users can use Comparison
Viewer mode (Figure 1) to see side-by-side com-
parisons of the current instance with one or more
candidate classes. This enables users to evaluate
subtle differences in appearance across categories,
supporting fine-grained decisions in ambiguous cases.
The visual contrasts help users determine which class
the instance more closely resembles.

Moreover, when exploring object segments, users
may either click directly on the image to reveal high-
lighted masks or switch to a labeled diagram (Figure
1) view that combines annotated segment names
with visual overlays (DG1). The labeled diagram (Fig-
ure 1) overlays part names directly on the image,
enabling users to visually inspect and verify the cor-
rectness of both part segmentation and labeling. This
is especially helpful when reasoning about part-based
classification systems or when segment-level informa-
tion is used in prediction. It aids users in spotting
mislabelings, missing parts, or inaccurate boundaries,
and supports fine-grained correction and feedback.

In addition, the essential attribute view (Figure
1) highlights key part-level segments that the model
has learned to associate with a particular class. These
are considered “essential” features for correct classi-
fication—for example, a cat’s pointed ears or a car’s
headlights. By surfacing these segments, users can
verify whether the model is focusing on semantically
meaningful parts and detect cases where it mistakenly
treats non-essential objects (like a hair clip in Figure
2) as defining features.

Concept Visualization Panel (Radial Tree)
To support exploration of different classes and their
hierarchical relationships, the system provides a radial
tree visualization at the bottom of the interface. This
view presents the full depth of the classification hierar-
chy, allowing users to navigate and inspect class rela-
tionships across multiple levels. Its radial layout gives
an overview of the structure before interaction, helping
users understand the global organization of categories
at a glance. In our model, objects are organized within
a hierarchical classification structure, where each label
is associated with a confidence score. The tree view
presents the model’s top classification candidates with

accuracy scores at each level dynamically when an
example is selected in different views such as example
or comparison view (Figure 1 and). This feature
aligns with DG3, as it eliminates the need to ask
for confidence levels and labels individually for each
class in the hierarchy. Instead, the system dynamically
surfaces these explanations as users click on differ-
ent images, adapting the view based on the context
of their interaction. Predicted paths are automatically
highlighted, and local actions (e.g., selecting a node)
are visually echoed in the media viewer and chat box,
reinforcing a sense of coordinated awareness across
views. Users can interact with the tree using the same
operations available through natural language input. By
selecting nodes, they can explore example instances,
compare alternatives, and inspect essential attributes
and their corresponding labels at different levels of
hierarchy.

System Usage
A core strength of MuCHEx lies in its ability to facilitate
debugging at various levels of a model’s hierarchical
classification, moving beyond mere leaf-node errors
to address more fundamental confusions. In this sec-
tion, we illustrate this capability through a walkthrough
demonstrating how MuCHEx can be utilized to diag-
nose and understand higher-level classification errors
in hierarchical object classification.

We discuss an example is based on classification
of different types of mechanical tools (i.e., hammers,
wrenches, screwdrivers), as would be beneficial for
guidance assistance for mechanical repair support or
when cataloging repair equipment as are included
in mechanical tools classification dataset. Imagine a
scenario where the model misidentifies a “ball peen
hammer”, which is a type of “striking tool”, as a
“socket wrench”, which is a type of “wrench”. The
user, noticing this initial classification error, begins
the debugging process by viewing the item within
MuCHEx’s radial tree to examine the classification
labels and their hierarchical relationships (Figure 1).
To better understand the model’s confidence and to
explore alternative classifications, the user can ask the
system in natural language, “What is this?” The sys-
tem responds with several candidate labels. While the
top candidate shows identification as a “wrench” with
medium confidence, the second candidate suggests
it may be a “striking tool”, specifically a “ball peen
hammer”. This prompts the user to further explore the
explanation behind the misclassification. This confirms
the initial classification error and motivates the user
to investigate the root cause, leveraging MuCHEx’s

Month 2025 Publication Title 7

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2025.3598204

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2025 at 15:32:52 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

capabilities to examine the model’s reasoning.
To understand why this error occurred, the user’s

next step is to ask the system, “Why is this a wrench?”
In response, the system presents the essential at-
tributes it used to reach that conclusion (Figure 1).
Here, the user might discover a segmentation error.
For example, the system may indicate that the pres-
ence of “PartX” led it to classify the item as a “wrench”,
mistakenly identifying “PartX” as an essential attribute
of a wrench rather than a striking tool. However, the
user knows this part is not essential. This reveals that
the system either failed to recognize a key segment
or incorrectly marked a non-essential part as critical.
To address this, the user can provide the system with
more examples—such as a wider variety of striking
tools—to help it learn to correctly distinguish and seg-
ment “PartX” from truly essential attributes.

Finally, the user may encounter a deeper issue:
an essential attribute error. Using MuCHEx’s labeled
diagrams or by clicking on individual segments of the
misclassified instance, the user can manually inspect
all detected parts (Figure 1). This allows them
to verify whether the system segmented the object
correctly but assigned undue importance to an incor-
rect part. Upon identifying this, the user can fix the
error by teaching the system via natural language—for
example, saying, “this is a striking tool, not a wrench”.
The system learns from this correction. The user can
then repeat this debugging process if other levels of
the hierarchy remain misclassified, ensuring that both
the final classification and the underlying reasoning are
accurate and robust.

USER EVALUATION
To evaluate the debugging tool and assess the effec-
tiveness of the different interface components in an
exploratory debugging scenario, we conducted a user
study. The study was approved by our institution’s In-
stitutional Review Board (IRB). For this study, we used
a model (described in the “Model” section) that was
trained on object classification with images of Oxford-
IIIT Pet [17] datasets (cats and dogs with different
breeds).

Study Design and Procedure
We conducted a lab-based user study to evaluate
how participants interact with our system in a few-shot
classification setting (4-shot learning). We selected a
4-shot learning setting because, through pilot testing,
we found that it reflects a diverse range of model
failures across different levels of the class hierarchy,
including misclassifications, segmentation issues, and

incorrect attribute associations. This makes it well-
suited for evaluating our system’s ability to support
error analysis. At the same time, limiting each class
to four instances keeps the total dataset size manage-
able for participants, avoiding cognitive overload and
keeping the study duration within reasonable bounds.
Importantly, this aligns with real-world challenging sce-
narios where labeled data is scarce, and effective
debugging becomes especially critical to ensure model
reliability.

Also, the goal of the study was to evaluate the effec-
tiveness of our tool in helping users identify different
types of errors, uncover interaction patterns, and ex-
plore how various features were used in alignment with
our design goals. To systematically evaluate the model
errors identified in our earlier analysis, we designed
three targeted task types, each corresponding to one
of the main error categories. Specifically, participants
were asked to complete three tasks: (1) identify and
correct misclassified objects, providing a reason for
each correction based on the model’s output (See Fig-
ure 2); (2) find an instance of a breed with incorrect
or nonsensical segmentation (See Figure 2); and
(3) detect an incorrectly marked essential attribute of
a breed—i.e., one that was classified as essential but
should not be (See Figure 2).

We used the Oxford-IIIT Pet dataset [17], which
contains images of cats and dogs across various
breeds. For the study, we selected a random subset
of 12 classes due to time constraints of studies. The
model was trained using 4-shot learning to simulate
limited data conditions, and its classification accuracy
across different levels is reported in Table 1. This setup
allowed us to test the tool in a challenging but realistic
scenario where users could explore the limits of model
understanding and engage with different levels of clas-
sification and annotation errors.

After completing the tasks, participants filled out a
questionnaire rating their usage of and the perceived
helpfulness of each interface element on an ordinal
scale. Each session lasted approximately 60 minutes,
allowing participants to proceed at their own pace. We
collected participants’ responses to the main debug-
ging task, along with comprehensive interaction logs.
To evaluate users’ mental model of our system, par-
ticipants also completed a post-study questionnaire.
Participants’ satisfaction with the explanations and
their trust in the system were both assessed using
scales adapted from Hoffman et al. [20], specifically
the Explanation Satisfaction Scale and the Trust Scale
for the XAI context. This was followed by a short
informal interview to understand their strategies and
experiences better. We recruited 10 participants (8

8 Publication Title Month 2025

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2025.3598204

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2025 at 15:32:52 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

males and 2 females), all undergraduate or graduate
students in computing-related fields, as we sought
participants with familiarity with machine learning for
the debugging context of the study.

Study Results
Interaction Patterns To understand how participants
interacted with the system across modalities and
views, we analyzed their usage patterns during the
task. We observed that the majority of interactions
(80.35% average per participant) were conducted
through GUI-based inputs, while 19.65% involved nat-
ural language (NL) input. This interaction ratio aligns
with DG2, which supports flexible, dual-modal interac-
tion. Participants frequently used NL input to initiate
exploration or inquire about high-level information—for
example, asking for explanations, querying essential
attributes, or requesting class comparisons. These
natural language interactions often served as entry
points into the task, after which participants relied more
heavily on GUI components to drill down into finer-
grained inspection, such as examining segmentations
or navigating the class hierarchy for detailed compar-
isons. Additionally, it was notable that 70% of all NL
inputs were issued while participants had an image
or part of an image in focus (e.g., while viewing an
object in the Media Viewer or referencing a labeled
segment using “this”). This shows the different use
cases for modalities: users relied on language to ask
further details when referring to an object and on GUI
actions for clear goal-driven tasks.

Additionally, we calculated the average percentage
of how frequently participants interacted with each
view. The Concept Visualization Panel (Tree) was
used most frequently, averaging 53.62% of interac-
tions, followed by the Media Viewer at 26.73%, and
the Conversational Chat Box at 19.65%. These results
support DG1, which emphasizes the need for multi-
level exploration across both instance-level visual evi-
dence and higher-level class hierarchies. The greater
use of the Tree View suggests that participants fre-
quently navigated and inspected relationships between
categories, while the Media Viewer supported image-
based reasoning, and the Chat Box enabled clarifica-
tion or exploratory questions. Together, these patterns
demonstrate that participants made use of all three
coordinated views in complementary ways: validating
DG1 for enabling cross-level inspection, and DG2 for
supporting fluid transitions between GUI interactions
and natural language inputs based on the nature of
the task.

A closer examination of the natural language (NL)

inputs revealed that 39 inputs (16% of all NL inputs)
were used to trigger features such as the Examples
View (Figure 1) and Comparison View (Figure
1), which typically require a sequence of at least
three GUI-based actions (e.g., selecting a node, navi-
gating to the comparison menu, and choosing a ref-
erence point). Among these, 32 commands invoked
comparisons and 7 requested examples. This behavior
indicates that participants turned to NL input when
the required GUI interactions became too complex
or cumbersome, highlighting its value for accessing
advanced functionality with minimal effort. However,
when using direct manipulation, participants manually
opened the Comparison Viewer 112 times and the
Examples Viewer 205 times. These figures suggest
that while GUI interactions were used frequently, NL
served as a strategic shortcut when tasks involved
more depth or coordination across multiple elements.
Together, these findings reinforce the value of enabling
DG2 for balancing efficiency and control, particularly in
complex debugging scenarios.

Moreover, to provide some quantitative data for
the complexity of the debugging tasks, we logged
participants’ completion times and their responses.
The tasks varied in duration, reflecting their differ-
ent challenges. Task 1, correcting misclassifications,
was the most involved (Mean = 15.76 min, Median
= 18.19 min, Range = [5.79–20.51 min]). In contrast,
Task 2, which required finding segmentation errors,
and Task 3, focused on detecting incorrect essential at-
tributes, demanded less time (Task 2 Mean = 5.79 min,
Median = 4.21 min; Task 3 Mean = 6.00 min, Median =
4.34 min). Upon manually evaluating each participant’s
answers, we found that all 10 participants successfully
accomplished three tasks (100% task success).

Mental Model Questionnaire The results of the post-
task explanation and trust questionnaire, adapted from
Hoffman et al. [20], indicate generally strong agree-
ment about the system’s efficiency and usefulness
in helping users understand how the tool works, as
shown in Table 2. Notably, items related to explanation
satisfaction, sufficiency, and predictability received high
agreement scores (≥60%).

Consider the lower agreement scores (60% for
“The outputs of the tool are very predictable.” and “This
explanation of how the tool works seems complete.”)
Reduced predictability is a natural side effect of adap-
tive or dynamic interfaces [21]. While this adaptivity can
lead to perceived unpredictability, it offers significant
benefits such as reducing cognitive effort and the steps
needed to find the details for the task. It may also
stem from the debugging context, as participants were

Month 2025 Publication Title 9

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2025.3598204

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2025 at 15:32:52 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

TABLE 2. Post task questions (adapted from Hoffman et
al. [20]) for which at least 60 % of participants selected “agree”
or “strongly agree”.

Question text Agreement

From the explanation, I know how
the tool works.

100%

This explanation of how the tool
works is satisfying.

100%

This explanation of how the tool
works tells me how to use it.

90%

This explanation of how the tool
works is useful to my goals.

90%

The tool is efficient in that it works
very quickly.

80%

This explanation of how the tool
works has sufficient detail.

80%

The outputs of the tool are very
predictable.

60%

This explanation of how the tool
works seems complete.

60%

This explanation of the tool shows
me how accurate the tool is.

60%

explicitly tasked with exploring error cases. This likely
exposed them to more unexpected outputs, reducing
their ability to reliably anticipate the system’s behavior.

Although three items specifically related to trust in
the system’s outputs received lower agreement, this
aligns with the experimental setup: participants were
tasked with identifying and correcting system errors.
As such, their lower trust ratings reflect appropriate
skepticism and suggest that participants were correctly
engaged in a critical evaluation of the tool’s behavior.

Post-Task Interview Following the task, we conducted
semi-structured interviews with participants to gain
qualitative details about their interaction experiences.
Participants were asked open-ended questions such
as “What features did you use the most?”, “Which ones
helped you make decisions or spot issues?”, and their
general thoughts on the use of multimodal input and
multiple coordinated views.

All participants emphasized the tool’s capability
to identify diverse errors occurring at various levels,
as well as pointed out several features they found
especially beneficial. The Labeled Diagram (Figure
1) view was the most frequently cited, with 8 out
of 10 participants noting it was essential for identifying
incorrect segmentations. Majority of participants (7 out
of 10) appreciated the flexibility of interaction, stating
they alternated between GUI-based interaction (e.g.,
Tree View) and natural language input depending on
the nature of the task. Also, two participants specifically

noted that they preferred GUI-based interaction using
the tree view when there was a clear context or goal,
but found natural language input more helpful when
they were unsure how to begin or needed more details.
In addition, three participants specifically highlighted
the Comparison (Figure 1) feature as particularly
useful for confirming that an instance was assigned to
the correct class. Similarly, three participants pointed
to the Essential Attributes (Figure 1) view as useful
for understanding the reasoning behind the system’s
classifications.

DISCUSSION
In this paper, we introduced a multimodal visual tool
that provides multi-level explanations to support users
in understanding and debugging different types of
classification errors. The system was grounded in
three user-centered design goals focused on support-
ing hierarchical navigation, multimodal interaction, and
adaptive information presentation. To evaluate the sys-
tem, we tested it on three different datasets (Table 1).
Our findings highlight that while object classification
models perform confidently on high-level classes—
such as distinguishing between an animal and a
vehicle—they struggle with fine-grained classification
tasks, such as identifying specific breeds or models,
especially under limited data conditions (e.g., few-shot
learning). More broadly, this work illustrates the value
of combining multiple modes of interaction, such as
visual and natural language, for supporting diverse
user goals in model debugging. It also highlights the
importance of dynamically adapting explanations to the
user’s current task and input type, rather than relying
on static or one-size-fits-all feedback. This provides
concrete evidence that flexible, coordinated interaction
modalities and context-aware explanation delivery can
enhance usability and interpretability in complex deci-
sion spaces.

To assess the effectiveness of our tool in this
challenging setting, we trained a model using 4-shot
learning on the Oxford-IIIT Pet dataset [17] and con-
ducted a lab-based user study with 10 participants.
Participants were tasked with identifying and correcting
three types of errors, such as high-level misclassifica-
tion, incorrect reasoning, and segmentations. This task
was intentionally difficult, as the model achieved only
52.5% accuracy in breed-level classification, compared
to 99.1% accuracy in identifying the broader animal
category (Table 1). Despite this, all 10 participants
successfully completed all three tasks, demonstrating
the tool’s effectiveness in supporting error discovery
across multiple classification levels. Interaction log

10 Publication Title Month 2025

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2025.3598204

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2025 at 15:32:52 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

analysis further supports the utility of our design goals.
As detailed in the Study Results Section, all three co-
ordinated views—the concept tree, media viewer, and
NL interface—were frequently used, validating DG1.
Participants explored both hierarchical structures and
instance-level details using these synchronized views.
In line with DG2, while the majority of interactions
(80.35%) were performed through GUI-based actions,
natural language input accounted for 19.65% of in-
teractions. Notably, most NL queries were issued in
reference to specific images or segments, suggesting
that users relied on language to request additional
contextual explanations, while GUI interactions were
preferred for direct, goal-oriented tasks. Overall, these
findings demonstrate that integrating multimodal in-
teraction and coordinated views can significantly aid
users in navigating complex hierarchical classification
systems and identifying subtle model failures.

Moreover, the ability to explore classification deci-
sions through our conversational visual tool provides
opportunities for understanding model behavior than
single post hoc explanations alone. Our task-driven,
adaptive interface design contributes to the growing
literature in interactive explanation such as supporting
retrospective analysis [22] key goals that are difficult
to meet with static explanation systems.

Beyond visual inspection, our system highlights the
value of natural language (NL) as a flexible and ex-
pressive modality for interacting with machine learning
models. In our user testing, participants strategically
used NL to initiate comparisons, inspect alternatives,
and request reasoning tied to visual evidence. Existing
systems (e.g., [23], [24]) have demonstrated that the
integration of NL into visual tools can allow for a
more natural and accessible inquiry process. In addi-
tion to broadening interaction modalities, there is also
an opportunity to expand the types of explanations
supported by the system. While our current system
supports NL explanations tied to visual outputs, future
work could expand the scope of explanation types.

Limitations and Future Work
While our design effectively supports few-shot learning
scenarios where users need to debug classifications
over a small number of instances and classes, this
focus also introduces scalability limitations. In our eval-
uation and design process, we primarily targeted use
cases where the model has only seen a few examples
per class. Accordingly, visualizations such as the radial
tree and image grid were optimized for small-scale
exploration. However, these techniques may become
cluttered or unwieldy as the number of classes or

instances increases, for example, in real-world scenar-
ios involving hundreds of categories or thousands of
predictions. This limitation suggests the need for more
scalable visual paradigms. Future work should explore
alternative visualization strategies, such as collapsi-
ble tree structures, zoomable node-link diagrams, or
cluster-based summarizations to better support large
hierarchical datasets. Additionally, features such as
search and filtering across the class hierarchy could
ease navigation and reduce visual overload.

Another limitation of our current system is its focus
on instance-by-instance analysis. While this mode is
well-suited for understanding localized errors in few-
shot learning settings, it is insufficient for debugging
cases where analysts need to identify patterns across
many samples. For example, users may want to detect
systematic errors, such as recurring misclassifications
between similar classes. To support this, future iter-
ations of the system should enable batch analysis
capabilities, for example, tools to “show all instances
where the model confused class A with class B” or to
explore clusters of misclassified examples. Supporting
aggregate-level alongside single-instance views would
significantly enhance the tool’s usefulness in large-
scale debugging tasks. Finally, our evaluation with
the Oxford-IIIT Pet dataset [17] focused on leaf-node
classifications. This is the case where models face the
most challenging distinctions, such as distinguishing
between African elephants and Asian elephants, or
even more specific contrasts like African savannah
and African forest elephants, which can be challenging
even for humans. However, since this dataset’s top-
level accuracy of over 99% for top-level classification
(e.g., distinguishing animals), we also added a use
case example in “System Usage” to explicitly show-
case how MuCHEx would be used to diagnose a
higher-level error, such as a model confusing a coyote
with a wolf.

CONCLUSION
This paper contributes a novel multimodal conversa-
tional debugging tool, MuCHEx, that integrates coordi-
nated views, natural language interaction, and adaptive
explanations for hierarchical object classification. We
also present findings from a human-subjects study
demonstrating the tool’s effectiveness in helping users
identify classification errors. Beyond the scope of this
study, our tool can be serve as a general-purpose
debugging assistant for object classification tasks. Be-
fore deploying models into real-world, domain-specific
applications—such as medical imaging, autonomous
driving—developers can use this system to explore

Month 2025 Publication Title 11

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2025.3598204

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2025 at 15:32:52 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

failure cases, verify confidence levels, and trace rea-
soning pathways across the model’s hierarchy. For ex-
ample, developers of autonomous driving models could
use the system to distinguish whether misclassifica-
tions occur between nearby classes (e.g., pedestrian
vs. bicyclist) or stem from deeper issues in the model’s
visual segmentation. Such pre-deployment debugging
workflows are especially crucial in high-stakes or low-
data domains. Our system enables developers and
non-experts alike to collaboratively investigate and re-
fine model predictions, making it a valuable tool in
pipelines. Future work may explore integration with
active learning or automated retraining pipelines, lever-
aging user-identified errors to improve model perfor-
mance iteratively.

ACKNOWLEDGMENTS
This work was supported by the DARPA ECOLE Pro-
gram under award number HR00112390063.

REFERENCES
1. X. Zhang, Y.-H. Yang, Z. Han, H. Wang, and C. Gao,

“Object class detection: A survey,” ACM Computing
Surveys (CSUR), vol. 46, no. 1, pp. 1–53, 2013.

2. B. Zhao, J. Feng, X. Wu, and S. Yan, “A survey
on deep learning-based fine-grained object classi-
fication and semantic segmentation,” International
Journal of Automation and Computing, vol. 14, no. 2,
pp. 119–135, 2017.

3. M. A. Grasso, D. S. Ebert, and T. W. Finin,
“The integrality of speech in multimodal interfaces,”
ACM Transactions on Computer-Human Interaction
(TOCHI), vol. 5, no. 4, pp. 303–325, 1998.

4. S. Mohseni, N. Zarei, and E. D. Ragan, “A multidis-
ciplinary survey and framework for design and eval-
uation of explainable ai systems,” ACM Transactions
on Interactive Intelligent Systems (TiiS), vol. 11, no.
3-4, pp. 1–45, 2021.

5. M. Q. Wang Baldonado, A. Woodruff, and A. Kuchin-
sky, “Guidelines for using multiple views in infor-
mation visualization,” in Proceedings of the working
conference on Advanced visual interfaces, 2000, pp.
110–119.

6. A. Saktheeswaran, A. Srinivasan, and J. Stasko,
“Touch? speech? or touch and speech? investigating
multimodal interaction for visual network exploration
and analysis,” IEEE transactions on visualization and
computer graphics, vol. 26, no. 6, pp. 2168–2179,
2020.

7. B. Steichen, G. Carenini, and C. Conati, “User-
adaptive information visualization: using eye gaze

data to infer visualization tasks and user cognitive
abilities,” in Proceedings of the 2013 international
conference on Intelligent user interfaces, 2013, pp.
317–328.

8. M. D. Rahman, B. Doppalapudi, G. J. Quadri, and
P. Rosen, “A survey on annotations in information
visualization: Empirical insights, applications, and
challenges,” arXiv preprint arXiv:2410.05579, 2024.

9. P. W. Koh, T. Nguyen, Y. S. Tang, S. Mussmann,
E. Pierson, B. Kim, and P. Liang, “Concept
bottleneck models,” 2020. [Online]. Available: https:
//arxiv.org/abs/2007.04612

10. A. K. Menon, A. Rajagopalan, B. Sumengen,
G. Citovsky, Q. Cao, and S. Kumar, “Online
hierarchical clustering approximations,” 2019.
[Online]. Available: https://arxiv.org/abs/1909.09667

11. M. Oquab, T. Darcet, T. Moutakanni, H. Vo,
M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby, M. Assran, N. Ballas,
W. Galuba, R. Howes, P.-Y. Huang, S.-W. Li,
I. Misra, M. Rabbat, V. Sharma, G. Synnaeve,
H. Xu, H. Jegou, J. Mairal, P. Labatut, A. Joulin,
and P. Bojanowski, “Dinov2: Learning robust
visual features without supervision,” 2024. [Online].
Available: https://arxiv.org/abs/2304.07193

12. D. Srivastava, G. Yan, and L. Weng, “VLG-
CBM: training concept bottleneck models with
vision-language guidance,” in Advances in Neural
Information Processing Systems 38: Annual
Conference on Neural Information Processing
Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024, A. Globersons,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. M.
Tomczak, and C. Zhang, Eds., 2024. [Online].
Available: http://papers.nips.cc/paper_files/paper/
2024/hash/90043ebd68500f9efe84fedf860a64f3-
Abstract-Conference.html

13. M. Yüksekgönül, M. Wang, and J. Zou,
“Post-hoc concept bottleneck models,” in The
Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-
5, 2023. OpenReview.net, 2023. [Online]. Available:
https://openreview.net/forum?id=nA5AZ8CEyow

14. H. Zou and T. Hastie, “Regularization and variable
selection via the elastic net,” Journal of the
Royal Statistical Society: Series B (Statistical
Methodology), vol. 67, no. 2, pp. 301–320, 2005.
[Online]. Available: https://rss.onlinelibrary.wiley.com/
doi/abs/10.1111/j.1467-9868.2005.00503.x

15. J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d ob-
ject representations for fine-grained categorization,”
in 4th International IEEE Workshop on 3D Represen-
tation and Recognition (3dRR-13), Sydney, Australia,

12 Publication Title Month 2025

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2025.3598204

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2025 at 15:32:52 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/2007.04612
https://arxiv.org/abs/2007.04612
https://arxiv.org/abs/1909.09667
https://arxiv.org/abs/2304.07193
http://papers.nips.cc/paper_files/paper/2024/hash/90043ebd68500f9efe84fedf860a64f3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/90043ebd68500f9efe84fedf860a64f3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/90043ebd68500f9efe84fedf860a64f3-Abstract-Conference.html
https://openreview.net/forum?id=nA5AZ8CEyow
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00503.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00503.x

THEME/FEATURE/DEPARTMENT

2013.
16. S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and

A. Vedaldi, “Fine-grained visual classification of air-
craft,” Tech. Rep., 2013.

17. O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V.
Jawahar, “Cats and dogs,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2012.

18. F. M. Miranda, N. Köhnecke, and B. Y. Renard,
“Hiclass: a python library for local hierarchical
classification compatible with scikit-learn,” J. Mach.
Learn. Res., vol. 24, pp. 29:1–29:17, 2023. [Online].
Available: https://jmlr.org/papers/v24/21-1518.html

19. OpenAI, “Chatgpt,” 2024, large language model.
[Online]. Available: https://www.openai.com

20. R. R. Hoffman, S. T. Mueller, G. Klein, and J. Litman,
“Measures for explainable ai: Explanation goodness,
user satisfaction, mental models, curiosity, trust, and
human-ai performance,” Frontiers in Computer Sci-
ence, vol. 5, p. 1096257, 2023.

21. K. Z. Gajos, M. Czerwinski, D. S. Tan, and D. S. Weld,
“Exploring the design space for adaptive graphical
user interfaces,” in Proceedings of the working con-
ference on Advanced visual interfaces, 2006, pp.
201–208.

22. B. Shneiderman, Human-centered AI. Oxford Uni-
versity Press, 2022.

23. Y. Guo, D. Shi, M. Guo, Y. Wu, N. Cao, and
Q. Chen, “Talk2data: A natural language interface
for exploratory visual analysis via question decom-
position,” ACM Transactions on Interactive Intelligent
Systems, vol. 14, no. 2, pp. 1–24, 2024.

24. B. Yu and C. T. Silva, “Flowsense: A natural language
interface for visual data exploration within a dataflow
system,” IEEE transactions on visualization and com-
puter graphics, vol. 26, no. 1, pp. 1–11, 2019.

Month 2025 Publication Title 13

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2025.3598204

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2025 at 15:32:52 UTC from IEEE Xplore. Restrictions apply.

https://jmlr.org/papers/v24/21-1518.html
https://www.openai.com

	DESIGN GOALS
	MODEL
	SYSTEM DESIGN
	Conversational Chat Box
	Media Viewer
	Concept Visualization Panel (Radial Tree)
	System Usage

	USER EVALUATION
	Study Design and Procedure
	Study Results
	Interaction Patterns
	Mental Model Questionnaire
	Post-Task Interview

	DISCUSSION
	Limitations and Future Work

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	REFERENCES

