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Abstract

Classical planning representation languages based on first-
order logic have preliminarily been used to model and solve
robotic task planning problems. Wider adoption of these rep-
resentation languages, however, is hindered by the limita-
tions present when managing implicit world changes with
concise action models. To address this problem, we propose
an alternative approach to representing and managing up-
dates to world states during planning. Based on the category-
theoretic concepts of C-sets and double-pushout rewriting
(DPO), our proposed representation can effectively handle
structured knowledge about world states that support domain
abstractions at all levels. It formalizes the semantics of pred-
icates according to a user-provided ontology and preserves
the semantics when transitioning between world states. This
method provides a formal semantics for using knowledge
graphs and relational databases to model world states and up-
dates in planning. In this paper, we conceptually compare our
category-theoretic representation with the classical planning
representation. We show that our proposed representation has
advantages over the classical representation in terms of han-
dling implicit preconditions and effects, and provides a more
structured framework in which to model and solve planning
problems.

Introduction
In robotic task planning, tracking all the implicit effects and
relationships in the world state can be very challenging, es-
pecially when working in complex environments. As a re-
sult, planning systems often rely on heuristics and simplify-
ing assumptions, which can lead to suboptimal or even in-
correct solutions (Wilkins and DesJardins 2001; Gil 1990).
To address these challenges, researchers have sought to com-
bine techniques from the fields of knowledge representa-
tion and automated planning which has formed the sub-
field called knowledge-based planning (Wilkins and Des-
Jardins 2001). The goal of this research is to develop more
structured and efficient representations of the world state
that can capture the complex relationships and dependen-
cies that arise in real-world planning problems. For example,
some approaches use structured knowledge representations,
such as ontologies (Kang and Choi 2009; Beetz et al. 2018;
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Tenorth and Beetz 2017) and knowledge graphs (Amiri,
Chandan, and Zhang 2022; Galindo et al. 2008; Miao, Jia,
and Sun 2023; Agia et al. 2021), to model the world state.
It is natural to conclude that knowledge-based planning,
as it stands, may be better suited to solve the problem of
tracking implicit preconditions and effects. On the contrary,
knowledge-based planning has not been widely adopted be-
cause it requires translating these rich and complex repre-
sentations into propositional facts so that they can be in-
terpreted using a classical planning languages like PDDL
(Knoblock et al. 1998). Because of this, they become com-
putationally intensive search problems in the absence of
search space reduction methods.

To address these concerns, we propose a world state repre-
sentation based on the category-theoretic concepts of C-sets
(Patterson, Lynch, and Fairbanks 2021) and double-pushout
(DPO) rewriting (Brown et al. 2021). Our representation not
only manages structured knowledge about the world state,
but also formalizes the semantics of predicates according to
a user-provided ontology, ensuring that the semantics of the
world state are preserved and implicit preconditions and ef-
fects are handled when transitioning between states.

Related Work
We foresee the nearest application of our approach as being
robotic task planning using scene graphs. Scene graphs are
a specialized version of knowledge graphs that restrict its
elements, attributes, and relations to facts obtained through
vision-based perception and inference (Chang et al. 2023).
In scene graphs, ontologies are often used to align scene
data to class hierarchies. In planning, these ontologies can be
used to enrich facts in the planning domain; however, these
ontologies are often integrated in the planning decisions in
ad hoc ways. For example, Galindo et al present a two-part
knowledge representation system, which includes (i) spatial
information about the robot environment in the form of a
scene graph, and (ii) an ontology that describes the hierar-
chical relationships between concepts (Galindo et al. 2008).
A function mapping elements in the scene graph to concepts
in the ontology is defined. Both facts obtained through the
scene graph and facts obtained from the ontology are trans-
lated into propositions in the domain. This approach results
in an explosion of facts that requires a pruning step in order
to be tractable for classical planning approaches.
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This problem of scene graphs being too complex, with
numerous vertices and edges, is long standing. To mitigate
this, planners can employ procedures that determine which
attributes of the scene are most relevant while also preserv-
ing the semantics provided by the class hierarchy and item
features. An example of a planner designed for this pur-
pose is the SCRUB planner (Agia et al. 2021). SCRUB is
a planner-agnostic procedure that prunes the state space to
include only the relevant facts within a scene graph. It is
paired with SEEK (Agia et al. 2021), a planner-agnostic
procedure that scores items in the scene based on an im-
portance score produced by a graph neural network (Silver
et al. 2021). All elements that are ancestors to the relevant el-
ements, according to some threshold, are preserved as facts
in the state. Both the SCRUB and SEEK procedures dra-
matically reduce the number of facts needed to characterize
the world state. The facts in the world are translated into bi-
nary predicates and passed to a classical planner. This pro-
vides a heuristic-based measure for identifying relevant facts
which can, like most heuristics, produce inaccurate approx-
imations. The combinatorial approach we propose uses the
existing semantic structure to determine relevance.

Miao et al take an alternate approach to using scene
graphs to describe world states and action models (Miao,
Jia, and Sun 2023). In their approach, action operators are
specified in terms of an initial state subgraph, a final state
subgraph, and an intermediate subgraph. For each element
and relation in these subgraphs, the global scene graph is
updated by adding elements into the scene graph that are
discussed in the action model. If elements are referenced
in the final state subgraph that are not present in the scene,
they are introduced as isolated vertices. These vertices are
connected to the global scene graph by consulting an ex-
ternal knowledge base that contains a type hierarchy. Their
procedure searches for a matching element type, identifies
a parent type that exists in the scene graph, and defines an
edge from that element to the existing type. This is a frag-
ile approach to resolving changes in the world state because
it relies on an external knowledge base to be correctly and
completely instantiated in order for new information to be
properly integrated.

Overall, using scene graphs as a representation for world
states during planning has gained attention. These methods
satisfy the need to support rich and complex representations
of the world using ontologies but still suffer in their abil-
ity to integrate ontological information in a way that does
not cause a state explosion. In our approach, the ontology
(schema) is an integral part of the formalism and with it
comes specialized tooling for manipulating such data.

Preliminaries
In this section, we explain the mathematical model for plan-
ning as a state transition system and briefly discuss the use
of category theory.

Planning as a State Transition System
The state transition system model of planning is a formal
representation of a planning problem that describes the state

space of the problem and the possible actions that can be
taken to move between states. In this model (Ghallab, Nau,
and Traverso 2004), a planning problem can be defined as a
tuple P = ⟨S,A, γ⟩, where:

• The state space S = {s0, s1, s2, ...} is the set of all pos-
sible states. A state s ∈ S represents a snapshot of the
world at a particular point in time. It ideally includes all
relevant information about the state of the world, such as
the location of items and their properties.

• The action space A = {a0, a1, a2, ...} is the set of all
possible actions. An action represents a transition from
one state to another state.

• The transition function γ : A× S → S is a partial func-
tion that, where it is defined, maps an action and a state
to the next state.

An action a ∈ A is applicable at state s ∈ S if γ(a, s)
is defined. A plan, π = ⟨a1, a2, . . . , an⟩, ai ∈ A, is any
sequence of actions. It is a solution to the planning problem
if it transitions from the initial state s0 to the goal state sg ,
i.e., γ(ai, si−1) = si for i = 1, . . . , n and sn = sg .

The state transition system model of planning provides a
structured and formal way to represent planning problems
and reason about the possible sequences of actions that can
be taken to achieve a goal. The manner in which states, ac-
tions, and transition functions are represented both classi-
cally and categorically is the focus of this paper.

Category Theory
Category theory is a mathematical framework that aids in
understanding the relationships between different mathe-
matical structures. In recent years, it has found important ap-
plications in systems engineering and design (Breiner, Pol-
lard, and Subrahmanian 2019; Breiner, Subrahmanian, and
Sriram 2016; Censi 2016), robotics and planning (Aguinaldo
et al. 2021; Aguinaldo and Regli 2021; Master et al. 2020),
and physics (Baez and Stay 2011; Abramsky and Coecke
2008). For the purposes of planning, category theory pro-
vides an alternative mathematical language for representing
world states and action models.

Classical Representations
The literature on classical and neoclassical planning en-
compasses a variety of approaches to modeling the state
of the world. Among these, the most widely employed
domain-independent representations are the set-theoretic,
classical, and state-variable representations (Ghallab, Nau,
and Traverso 2004).

Existing Representations for World States, S The clas-
sical representation of world states is based on a restricted
form of first-order logic in which the world states are rep-
resented as a conjunction of literals, where a literal is an
atomic proposition or its negation. These literals can encode
facts such as the location of items, the state of various sen-
sors, and other relevant information. Logical operators such
as AND, OR, and NOT are used to combine these literals
into more complex expressions that can be used to describe
the relationships between different parts of the world state.
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World states can be lifted to abstract states consisting of a
conjunction of predicates, where predicates are n-ary rela-
tions between variable symbols. For example, the predicate
on(x, y) might represent the fact that something represented
by x is on top of another thing represented by y or, equally
plausible, the converse. It is important to note that the se-
mantics of the predicates must be established informally, say
through external documentation or word of mouth. A predi-
cate becomes a grounded literal when the variable symbols,
like x and y, are assigned to symbols that are constant. For
instance, the grounded literal on(b1, b2) could represent a
block called b1 that is on top of a block called b2.

Existing Representations for Actions, A The classical
representation defines action schemas in terms of precon-
ditions, effects, and parameters. Preconditions describe the
conditions that must be true for the action to be applicable,
while effects describe the changes that the action makes to
the state of the world. Preconditions and effects are defined
in terms of predicates where their variable symbols, also
known as parameters, can take on different values depend-
ing on the context in which the action is used. The classical
planning representation assumes that actions are determin-
istic, meaning that their effects are completely specified and
do not depend on any probabilistic factors. Additionally, the
classical representation assumes that actions can be arranged
in any order, allowing for a wide variety of possible plans to
be generated. In practice these action schemas can be aug-
mented with types; however, types are not a formal feature
of the logical system.

Applicability In classical planning, the applicability of ac-
tions to a world state is determined by a set of precondi-
tions specified for each action. In the classical representa-
tion, preconditions are represented as conjunctions of liter-
als. To check whether an action is applicable in a particu-
lar world state, the planner examines whether the precondi-
tions of the action are satisfied by the current state. To do
this, a planner typically uses logical inference techniques
within propositional logic, first-order logic, or other logical
formalisms. Once grounded, conjunction of predicates can
be represented as sets of ground literals. The planner can
then check whether the precondition is a subset of the world
state, which means that the preconditions are satisfied in the
world state. It is possible to model domain-specific implica-
tions, called derived predicates in PDDL (Thiébaux, Hoff-
mann, and Nebel 2005), to incorporate implicit precondi-
tions when determining applicability of an action; however,
derived predicates do not make any changes to the world
state.

Transition, γ A state transition occurs when an action is
applied to a world state, yielding a new world state. Similar
to the preconditions, the world state can be interpreted as a
set of literals. Therefore, when an action is applied, the new
state is identified by applying set operations to the set repre-
senting the current world state. Positive effects add ground
literals to the set and negative effects, those prefixed with
NOT, subtract ground literals from the set to produce the
new world state.

Categorical Representation
To effectively manage world states during planning and plan
execution, we propose to adopt categorical logic as a log-
ical formalism. An essential feature of categorical logic is
the ability to capture the relationship between logical syntax
(theories) and semantics (models) using functors, through a
paradigm known as functorial semantics. This differs from
the standard formalism of first order logic because it gives
the syntax of the language status as an algebraic object in-
dependent of its semantics.

World States as C-sets
In our approach, we assume world states in robot task
planning domains can be effectively modeled using scene
graphs, which are structured representations of the elements,
attributes, and relations based on a domain-specific ontol-
ogy. Recall that scene graphs are a specialized form of
knowledge graphs that focus on the visual aspects of a
scene, with nodes representing items and edges representing
the spatial relationships between them (Chang et al. 2023).
These graphs can be used to capture a wide range of infor-
mation about a world state, including the physical and se-
mantic properties of items, their interactions with each other,
and the context in which they exist.

Our proposed representation provides a sort of denota-
tional semantics for scene graphs using the category C-Set.
Let C denote a small category, called a schema. A C-set1 is
a functor2 from C to the category Set. The schema is a cat-
egory whose objects we interpret as types and whose mor-
phisms describe “is-a” and other functional relationships be-
tween types. The category Set is the category of sets and
functions. Thus, a C-set is a functor that sends types to sets
and type relationships to functions. On this interpretation,
C-sets are a simple but useful model of relational databases
(Spivak and Kent 2011).

A more formal definition is provided below.
Definition 0.1 (Category of C-sets, C-Set). For a given
schema C, the category of C-sets is the functor category
C-Set := SetC, whose objects are functors from C to Set
and whose morphisms are natural transformations between
those.

In practice, the schema is a category that is finitely pre-
sented by generators and relations. As an example, let Gr =
{E ⇒ V } be the category freely generated by two objects,
E and V , and two parallel morphisms, src, tgt : E → V .
Then a Gr-set is a graph, which would be called by graph
theorists a “directed multigraph.” So, another interpretation
of C-sets is that they are a generalization of graphs to a broad
class of combinatorial data structures.

The category of elements (Riehl 2016) construction3 of
a C-set X packages the data of X into a category resem-
bling a knowledge graph. Specifically, a morphism in the

1A C-set also known as a copresheaf on C.
2We direct the unfamiliar reader to (Leinster 2016) for the def-

initions of categories, functors, natural transformations, limits, and
colimits.

3The category of elements construction of X may be expressed
using

∫
X in other texts.

493



B = {dog, cat}Animal

Person
C

favoritePet

A = {Sam, Molly}

s

G 

Set

rdf(Sam::Person, s::favoritePet, cat::Animal)
rdf(Molly::Person, s::favoritePet, dog::Animal)

Figure 1: An example C-set, G, that stores data about peo-
ple’s favorite pet. The category of elements contains triples
analogous to RDF triples.

category of elements can be interpreted as a Resource De-
scription Framework (RDF) triple (Patterson 2017), which
is a common text-based serialization format for knowledge
and scene graphs. A C-set is shown in this style in Figure 1.

Actions as Spans in C-Set
Action rules are specified as spans in C-Set. Action rules are
made up of components similar to those of action schemas in
classical representation. Specifically, actions rules are spans
(I ←↩ K → O) in C-Set that consists of the precondition, I ,
on the left-hand side, the effects, O, on the right-hand side,
and the glue, K, in the middle, which gives the data that
remains unchanged between the input and the output.

In our approach, we present spans of C-sets as colimits of
representable functors. A (covariant) representable functor
(MacLane 1971), C(A,−), for a given category C and ob-
ject A ∈ C maps objects, X ∈ C, to the set of morphisms
that go from from A to X . In other words, for a given repre-
sentable functor pertaining to A, objects X ∈ C are mapped
to the set of edges that go from A to X . A colimit taken
across functors like these glues all of the relevant structures
together. This conversion ensures that implicit substructure
is taken into account when an object, such as A, is explicitly
identified.

The categorical rule specification differs from the classi-
cal one in that it takes a declarative approach by not artic-
ulating what atoms should be added and removed from the
state, but rather discussing what should be in the state and
resolving conflicts using the double-pushout (DPO) rewrit-
ing procedure which is discussed in a later section.

Applicability Using Monomorphisms
Recall that in classical planning, a precondition is satisfied
by a world state when its literals are a subset of the world
state or if there exists a logical entailment between the pre-
condition and the world state. In the category-theoretic con-
text, these notions are generalized via monomorphisms.

Monomorphisms generalize the concept of an injective
function to arbitrary categories. In Set, monomorphisms are
precisely injective functions. In C-Set, monomorphisms are
natural transformations such that every component is an in-
jective function, e.g., a monomorphism between graphs is a
graph homomorphism such that the vertex and edge maps

Algorithm 1: Double-Pushout (DPO) Rewriting

Require: (action rule) I ←↩ K → O ∈ C-Set
Require: (world) X ∈ C-Set
m = FindHomomorphism(I ,X)
f = ComputePushoutComplement(l, m)
g = CompletePushout(l, f , m)
Y = ComputePushout(f , r)

are both injective. More specifically, the monic condition of
a monomorphism checks that two entities in the precondi-
tion cannot be mapped to the same entity in the world state.

Transition Using Double-Pushout (DPO) Rewriting
The action rules are exactly double-pushout (DPO) rewriting
rules. Double-pushout (DPO) rewriting is a type of graph
rewriting that is particularly well-suited for algebraic ap-
proaches to graph transformation. In fact, DPO rewriting
generalizes directly from graph rewriting to C-set rewriting
(Brown et al. 2021). The DPO method, described below, is
used to compute all possible matches of the preconditions,
and to determine which matches are compatible with the ef-
fects. The result is a set of transformation steps that can be
applied to the target graph.

DPO rewriting relies on the fundamental concept of a
pushout. A pushout is a colimit of a diagram having the
shape of a span (• ← • → •). Given a span X ← Z → Y ,
a pushout produces an object that is the union of X and Y
joined along Z, (X ∪ Y )/Z. A pushout in C-Set is com-
puted by taking the disjoint union of the sets being pushed
out, adding the functions between sets based on C, and quo-
tienting by Z.

Pseudocode for the DPO rewriting procedure is given in
Algorithm 1. The first step is to find a monomorphism, m,
that matches I in X , as described in the previous subsec-
tion. The pushout complement, f , is computed provided the
morphisms l and m. A pushout complement is a map that
manages the deletion of entities that form the complement
K/I . Because i is a monomorphism and we assume the
identification and dangling conditions (Brown et al. 2021)
are met, the pushout complement exists and is unique up
to isomorphism. Having constructed the three sides of the
square, l,m, f , the pushout square can be completed by a
unique map g. Then, to compute the new world state, the
right pushout square is computed provided f and r.

I K O

X Z Y

l r

m f

g

⌟⌟

The time complexity of the FindHomomorphism() sub-
routine is O(nk) where k is the size of I and n is the size
of the relevant substructure in X which is dictated by the
objects in I (Brown et al. 2021). The time complexity of
the remaining subroutines is the same as that of computing
pushouts in Set which is O(p) where p is the sum of the
sizes of the sets involved in the span.
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Precondition EffectGlue

IntermediateInitial Final

Action Rule

World State

Figure 2: An illustration of how DPO rewriting is executed
on a C-set where C defines the shapes and the arrows be-
tween them. Each shape in the figure is assigned to a color
to help with readability.

As an example, Figure 2 shows how an action rule
changes the initial state to the final state. In this figure, the
rule states that the circle in the initial state should be re-
placed by a trapezoid and the square and triangle should per-
sist. The initial state, bottom-left, satisfies the precondition
because it contains a matching pattern involving the square,
triangle, and circle. This means that a monomorphism can
be identified from the precondition to the initial state. The
intermediate state is the result of identifying a pattern that,
when joined with the precondition along the glue, produces
the initial state. This removes the circle from the initial state.
The final state is then constructed by taking the pushout for
the span (Intermediate ← Glue → Effect). This produces
a pattern where a trapezoid is added in place of the origi-
nal circle. The example shown in Figure 2 demonstrates that
rules can involve both the creation and destruction of enti-
ties in the world if the precondition contains an entity and
the effect does not contain that entity. This allows for a non-
monotonicity in updates of the world state.

Comparison
In this section, we discuss the conceptual differences be-
tween the classical and the categorical representations. The
comparison is summarized in Table 1. We also walk through
an example, shown in Figure 3, that highlights the limita-
tions of the classical representation in tracking implicit ef-
fects. In this example domain, a bread loaf (bread loaf)
and slices of the loaf (slice 0, slice 1, slice 2) are on
a countertop (countertop). The goal is to move the bread
loaf, and implicitly, all its slices, from the countertop to the
kitchen table (kitchentable).

Handling Structured Knowledge
This example presents a few noteworthy semantic features.
A planning representation in this domain must be able to en-
code the following facts, explicitly or implicitly, at different
points in time:

(a) the bread slices are part of the bread loaf
(b) the bread loaf is on the countertop

(c) the bread slices are on the countertop
(d) the bread loaf is on the kitchen table
(e) the bread slices are on the kitchen table

In the case of the categorical representation, fact (a) is
captured by the morphism is part of : BreadSlices →
BreadLoaf in the schema. Fact (b) about the bread loaf
being on the countertop is reified through an abstract type
called Object. This is done so that the morphism on :
Object → Object can represent the general notion of an
item being on top of another item, instead of the more
specific relation of a bread loaf being on a countertop.
Fact (c) is then captured by the composite morphism on ◦
is a ◦ is part of : BreadSlices → Object 4. In the classi-
cal representation, fact (a) is captured by the propositions
partOf(slice n, bread) for n = 0, 1, 2. Fact (b) and (d)
are captured by the proposition on(bread, countertop)
and on(bread, kitchentable). Fact (c) and (e) are
captured by the propositions on(slice n, countertop)
and on(slice n, kitchentable). Intuitively, because the
bread loaf is on the countertop, the slices that make up the
loaf are also on the countertop. In the categorical represen-
tation, this is captured using a composite morphism. In the
classical representation, this is done by explicitly stating for
each slice, that it is on the countertop.

Handling Applicability of Actions
In the categorical representation, applicability of an action
is determined by the existence of a monomorphism in C-Set
from the rule input to the world state. Recall that a rep-
resentable functor maps an object, x ∈ C, to the set of
morphisms that involve x. When you present an action us-
ing colimits of representables, there are both explicit con-
ditions given by the representables and implicit conditions
that appear when the representable is computed. This pro-
vides a mechanism for having implicit conditions repre-
sented in the action schemas. In this example, the initial
state satisfies the input of the action rule because it contains
BreadLoaf , Object, and Countertop and its related mor-
phisms. In the classical representation, applicability of the
action moveObj(bread, countertop, kitchentable) is
determined by whether or not the world state contains the el-
ement on(bread, countertop) in the set of propositions.

Handling Implicit Effects
Now that we have determined that this action is applicable
in both representations, we can apply the action. In the cat-
egorical representation, this action is modeled by a span in
C-Set whose left foot includes knowledge about the bread
loaf being on the countertop and whose right foot includes
knowledge about the bread loaf being on the kitchen table.
The apex of the span states that the bread loaf itself is pre-
served throughout this change. In the classical representa-
tion, the action schema describes the generic action of mov-
ing items x from one location, s, to another, t. The action op-
erator is grounded by assigning x to the breadloaf, s to the

4The operator ◦ represents a composite function which can be
read as ”f following g” or (f ◦ g)(x) = f(g(x)).
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Representation Categorical Classical
State, S C-set Conjunction of literals
Action, A Spans in C-Set containing: Precon-

ditions, Glue, Effects
Action model containing: Parame-
ters, Preconditions, Effects

Applicability Monomorphisms in C-Set Subset inclusion
Transition, γ DPO rewriting Set-based addition and subtraction

Table 1: A summary of the differences between the classical representation and the categorical representation aligned to the
state transition system model for planning.

is part of

is part of

{kitchentable}{0, 1, 2}

is a

BreadSlices BreadLoaf

Object

Countertop
is a is a

on

slice_0
slice_1
slice_2

{bread} {countertop}

partOf(slice_0, bread)
⋀ partOf(slice_1, bread)
⋀ partOf(slice_2, bread)
⋀ on(bread, countertop)
⋀ on(slice_0, countertop)
⋀ on(slice_1, countertop)
⋀ on(slice_2, countertop)

Initial State:

BreadLoaf

Object

Countertop
is a is a

on

BreadLoaf

Object

KitchenTable
is a is a

on

BreadLoaf

Object

moveObj(x,s,t)
  pre: on(x,s)
  eff: on(x,t) ⋀ ￢on(x,s) 

partOf(slice_0, bread)
⋀ partOf(slice_1, bread)
⋀ partOf(slice_2, bread)
⋀ on(bread, kitchentable)
⋀ on(slice_0, countertop)
⋀ on(slice_1, countertop)
⋀ on(slice_2, countertop)

x<=bread, 
s<=countertop, 
t<=kitchentable

Action:

New State:

Query: on(slice_0, kitchentable) 
=? True

on(slice_0, kitchentable) 
=? False

Categorical Representation Classical Representation

KitchenTable
is a

{kitchentable}{0, 1, 2}

BreadSlices BreadLoaf

Object

Countertop
is a is a

on

slice_0
slice_1
slice_2

{bread} {countertop}

KitchenTable
is a

Figure 3: A comparison of states, actions, and inferences made between the categorical representation and the classical repre-
sentation for an example that moves a loaf of bread from a countertop to a kitchen table. This example illustrates a failure of
the classical representation to preserve the global semantics of the world when actions act on only a part of the world. Using
the double-pushout method of C-set rewriting, the categorical representation is able to do so.

countertop, and t to the kitchentable. Once this action
is applied, a desirable outcome would be for the new state
to account for the movement of the bread slices from the
countertop to the kitchen table because they are part of the
breadloaf. In the categorical representation, the same com-
posite morphism that existed in the initial state exists in the
final state; however, the target of the morphism has changed
from the countertop to the kitchentable. This captures the
implicit change that occurred to the bread slice locations. In
the classical representation, the new state captures the fact
that the breadloaf is on the kitchen table, but does not cap-
ture the fact that the bread slices are on the kitchen table.
This error would likely cause a planner to instruct an agent
to move each bread slice individually due to an inconsis-
tency in the world state.

Conclusion
The limitations of classical planning representation lan-
guages in tracking implicit preconditions and effects have

motivated us to propose an alternative world state repre-
sentation based on the category-theoretic concepts of C-sets
and DPO rewriting. Our categorical representation accom-
modates structured knowledge about the world state and for-
malizes a model of the application domain using a user-
provided ontology. This method provides formal seman-
tics for using knowledge graphs and relational databases to
model world states and updates in planning. Our compari-
son between the classical and categorical planning represen-
tation languages demonstrates that our proposed represen-
tation is more structured and has advantages over the clas-
sical one in handling complex planning scenarios. Future
work include designing mechanisms for transferring plans
between domains and extending this system to handle non-
combinatorial data, such as numeric data. We believe that
our proposed representation has the potential to significantly
enhance the effectiveness and efficiency of planning systems
in robotic task planning domains.
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Saffiotti, A. 2008. Robot task planning using semantic maps.
Robotics and Autonomous Systems, 56(11): 955–966.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann. ISBN
9781558608566.
Gil, Y. 1990. Description Logics and Planning. AI Maga-
zine, 26(2): 1.
Kang, D.; and Choi, H.-j. 2009. Hierarchical Planning
through Operator and World Abstraction using ontology for
home service robots. 2009 11th International Conference on
Advanced Communication Technology, 2209–2214.
Knoblock, C.; Barrett, A.; Christianson, D.; Friedman, M.;
Kwok, C.; Golden, K.; Penberthy, S.; Smith, D. E.; Sun, Y.;
and Weld, D. 1998. PDDL — The Planning Domain Defini-
tion Language. Technical report, Yale Center for Computa-
tional Vision and Control.
Leinster, T. 2016. Basic Category Theory. Cambridge Uni-
versity Press.
MacLane, S. 1971. Categories for the Working Mathemati-
cian. New York: Springer-Verlag. Graduate Texts in Math-
ematics, Vol. 5.
Master, J.; Patterson, E.; Yousfi, S.; and Canedo, A. 2020.
String Diagrams for Assembly Planning. Lecture Notes in
Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics).
Miao, R.; Jia, Q.; and Sun, F. 2023. Long-term robot manip-
ulation task planning with scene graph and semantic knowl-
edge. Robotic Intelligence and Automation.
Patterson, E. 2017. Knowledge Representation in Bicate-
gories of Relations. CoRR, abs/1706.00526.
Patterson, E.; Lynch, O.; and Fairbanks, J. 2021. Categorical
Data Structures for Technical Computing. Compositionality,
4(5): 1–27.
Riehl, E. 2016. Category theory in context. ISBN
9780486809038.
Silver, T.; Chitnis, R.; Curtis, A.; Tenenbaum, J.; Lozano-
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