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ABSTRACT

Smartphones are frequently used in environments where the user
is distracted by another task, for example by walking or by
driving. While the typical interface for smartphones involves
hardware and software buttons and surface gestures, researchers
have recently posited that, for distracted environments, benefits
may exist in using motion gestures to execute commands. In this
paper, we examine the relative cognitive demands of motion
gestures and surface taps and gestures in two specific distracted
scenarios: a walking scenario, and an eyes-free seated scenario.
We show, first, that there is no significant difference in reaction
time for motion gestures, taps, or surface gestures on
smartphones. We further show that motion gestures result in
significantly less time looking at the smartphone during walking
than does tapping on the screen, even with interfaces optimized
for eyes-free input. Taken together, these results show that,
despite somewhat lower throughput, there may be benefits to
making use of motion gestures as a modality for distracted input
on smartphones.
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1. INTRODUCTION

Modern smartphone devices support two alternative input
modalities. Users can tap or gesture on the touch-sensitive screen
of the smartphone, or users can move the smartphone in physical
space and have their actions sensed by accelerometers or
gyroscopes. In our research, we are particularly interested in the
costs and benefits of physical motion of the smartphone as an
input modality. We call these deliberate movements of the device
motion gestures.

Motion gestures have attractive features that recommend them as
a mechanism for issuing commands on a smartphone. First, these
motion gestures expand the input bandwidth of modern
smartphones. For example, motion gestures can either serve as
modifiers of surface gestures, or they can be mapped to specific
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device commands. Second, alongside the increase in bandwidth,
motion gestures can represent a set of shortcuts for smartphone
commands. For actions performed using the touchscreen, the
phone must typically be in a specific state, e.g. a specific
application must be running, or a specific toolbar must be
invoked, whereas for motion gestures, the commands mapped to
the gestures can be always available. Finally, motion gestures may
require less visual attention than taps or gestures on the
touchscreen because the physical location of the smartphone can
be sensed via proprioception. As a result of the potential
advantages of motion gestures for smartphone input, researchers
have explored various aspects of the design of motion gesture
interaction [1, 22].

One specific advantage of proprioceptive sensing is that motion
gestures may be particularly beneficial as an input modality in a
subset of tasks where the user is distracted while using the
smartphone. There are many examples of distracted input on
smartphones. For example, users frequently access email and text
messages on their smartphone while walking. Therefore, users
must split their attention between the task of navigating their
physical environment and navigating information on the
smartphone screen. As another example, users frequently invoke
brief commands on their smartphones while driving. While it may
be undesirable to have a user interact with their device while
driving, users will continue to perform short commands. We are
not the first researchers to note that it makes sense to design input
techniques that demand limited visual attention from users while
performing tasks like driving [5, 9, 13].

While motion gestures have many theoretical advantages as an
input technique for distracted users, we are not aware of any
research that compares motion gestures to on-screen input for
distracted interaction. As we want to understand motion gestures
for distracted input in relative to more traditional on-screen input
methods, we consider surface gestures — directional swipes — and
taps on pre-defined widgets. In this paper, we compare motion
gestures, tap and swipe in two experimental conditions where the
user has limited ability to focus on the smartphone. First, we
examine user performance when the user is walking around a
prescribed path and carrying a light object in their non-dominant
hand. This condition replicates the situation where a user walks
along a sidewalk while carrying a briefcase or purse and
interacting with a smartphone. Second, we examine user
performance in an eyes free setting, where the phone is not visible
to the user as they perform actions. This condition replicates
situations where it might be undesirable for a user to focus his or
her visual attention away from their primary task, for example
while driving a car. We examine reaction time, walking speed,
visual focus, and throughput for the walking condition, and
reaction time and throughput for the eyes-free condition.

Our experimental results show that users’ response time is not
significantly different for motion gestures, tap or swipe.
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Moreover, though participants issue significantly fewer
commands with motion gestures than with tapping or flicking, and
the reduction in throughput can be mainly attributed to the
increased time taken for motion gestures as compared to tap or
swipe. Surprisingly, we also find for the walking task that
performing a motion gestures reduces the average walking speed
of experimental subjects, but that subjects spend less time looking
at the smartphone device when using motion gestures. Finally, we
note that motion gestures are more error-prone than other
techniques, and, specifically, that participant performance seems
to vary over time. Recognition rates occasionally fall to very low
levels, particularly during the walking task, and it is very difficult
for participants to diagnose and correct the errors they are making.
Our goal in presenting these results is to inform designers of
motion gestures of the potential benefits and costs of motion
gestures so that designers can make better decisions on where,
when, and how to incorporate motion gesture into smartphones as
an input technique.

The rest of the paper is organized as follows. We begin with an
overview of related work in the design and evaluation of motion
gestures, and in the design of limited attention interfaces. We then
describe our interaction techniques and their implementation.
Next, we present our experimental methodology, and describe our
results. We analyze our results in terms of cognitive demand and
error rates. We close with a discussion on potential limitations of
motion gestures as an input modality for distracted smartphone
input.

2. Related Work

Many researchers have explored interaction in distracted contexts.
For example, Noy et al. found that manipulating items using touch
is more cognitively demanding than traditional tactile knobs due
to increased visual demand [17]. More recent work has focused on
gestural interfaces on the surface of the wheel for use in distracted
contexts (e.g. [2, 7, 9]). Gonzalez et al. report significant
performance improvements and lowered cognitive load when
using the EdgeWrite eyes-free input over touch-based input [9].
Similarly, Doéring et al. explored multi-touch gestures on the
steering wheel and report significantly lower visual demand when
compared to central console touch interaction [7].

In the mobile interaction domain, researchers have noted that,
when users have to divert some of their attention to a relatively
simple task like walking, their performance with the smartphone
device is negatively affected. In particular Bergstrom-Lehtovirta
et al. noted that there is a trade-off between walking speed and
target accuracy for mobile devices [3].

To assess the relative efficacy of different interaction modalities
on mobile devices during distracted tasks, Bragdon et al.
examined soft buttons, hardware buttons, and surface gestures [4]
under conditions of medium and high distraction. They found that
marking menus (i.e. directional gestures) activated along a
smartphone’s bevel provided the fastest response time and the
highest performance on the distractor task.

While hardware buttons, software buttons, and gestures have been
the most common input modality for smartphone devices,
researchers have also explored the use of accelerometers as a
mechanism for issuing commands to smartphones. Recent work
has considered such gestural interaction with the device for a wide
variety of tasks including, text input [12, 19], issuing device
commands [22], and map navigation [20].

In distracted environments, most gestures may lessen the need for
visual feedback and make use of a user's proprioception to
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substitute for accurate input on the touch screen [18]. In an
evaluation of motion marking menus, Oakley and Park note that
users can access up to 19 commands accurately using three-
dimensional gestures [18].

While researchers have noted the lower visual feedback of motion
gestures for input, and have evaluated hardware buttons, software
buttons, and gestures for distracted input, we are aware of no
literature that contrasts directly the input modalities of tap and
swipe to motion gestures, specifically assessing the relative
cognitive costs of the different input modalities.

3. EXPERIMENT

3.1 Participants and Apparatus

We selected 12 participants aged 22-36 (mean = 25.4, S.D. =4.8,
4 females, all right handed) from the student population in the
Computer Science department at a local university.

The experiment was performed using a Nexus One smartphone
running custom software on Android 2.3.3.

3.2 Experimental Design
3.2.1 Interfaces

A goal of this paper is to measure the costs of different input
modalities—tap, swipe, and motion gestures—in situations where
the end-user has a limited ability to visually focus on the
smartphone display. The scenarios we envision include interaction
during contexts such as walking or driving a car. We call this style
of interaction distracted input, and we note that typical
smartphone applications such as email clients, text message
viewers, and mobile web browsers are poorly designed for
contexts that require distracted input.

The guidelines for smartphone application design [8] provide little
guidance for how to design interfaces for distracted input.
However, the principles of interaction design for contexts where
the user is distracted are relatively obvious [9]:

1. The interface should limit the need for visual attention during
interaction.

2. The interface should provide streamlined commands for the
most common tasks.

With these two principles in mind, we designed three alternative
interfaces to support distracted input, one for tap, one for swipe,
and one for motion gestures (see Figure 1 and Figure 2). Each of
our interfaces supports four commands: Left, Right, Up, Down.
We chose four commands for two reasons. First, the set of
commands is sufficiently small that users should be able to master
them within a short period of time during a training block,
allowing us to measure expert performance with each input
modality. Second, four commands can easily be mapped to
navigation directions, Previous, Next, Up, Down, and these
commands are common shortcuts for tasks such as scanning
email, scanning text messages, or other monitoring tasks that are
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Figure 1. Distracted motion input: a) our Swipe
gesture implementation and b) Tap.
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b) Next - a flick to the right c) Previous - a flick to the left

a) Double Flip - rotating the phone away and then back
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d) Down - a flick away from body e) Up - a flick towards body

Figure 2. Our Move implementation: a) shows the Double Flip delimiter, while b)-e) show the four motion gestures.

commonly performed in distracted contexts.

When designing our experimental interface, we considered both
output (screen display) and input (tap, swipe, or move). As the
application was designed for situations with limited visual
attention, the primary mechanism for prompting a participant for a
command was a simple custom speech-to-text engine that output
the command through the smartphone speakers. One of the
researchers recorded each of the four commands. To ensure
participants could hear the audio command clearly, we carefully
tuned pitch and volume to ensure the command was easy to hear
within our experimental environment. As well, the experiment
was conducted in a 4m by 4m soundproof experimental room.
One researcher and the participant were the only occupants of the
room.

Alongside audio output, the desired command was also displayed
on the screen. The visual display of the command on the screen
was primarily for reinforcement. In Tap, the application display
screen was a black background separated into four quadrants as
shown in Figure 1b. In the non-active area in the center of the
screen, a single command was displayed in 12 pt Verdana font.
The Swipe (Figure 1a) and Move (Figure 2) applications consisted
of a blank, black screen. As movement (either on screen or in
physical space) was the sole mechanism for input, no divisions or
widgets were displayed. In the center of the screen, using identical
font, color, and location to Tap, the Swipe and Move interfaces
displayed a single command to be activated.

For input, Tap simulates a classic widget-based approach in which
the user clicks with one finger to issue one of the four commands
on the touch screen. To maximize button size, the touchscreen is
divided into four quadrants situated around the center of the
display in manner similar to radial menus [11], as shown in Figure
la. The user can issue the four commands necessary for our study
— up, down, left and right — by tapping within the corresponding
quadrant on the display. The area in the center of the touchscreen
serves as a display for the current gesture the user needs to
perform. Clicking within this small circular area does not activate
any of the four commands so as to limit potential errors caused by
clicking at the central intersection of the quadrants.

Swipe allows the user to perform surface gestures to issue the four
commands required by the experiment (Figure 1b). Our Swipe
implementation is a more permissive version of the swipe
interface evaluated by Bragdon et al. [4]. In Bragdon et al., swipes
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were performed either along the bevel or in the center of the
display. In our interface, we did not discriminate between a bevel
swipe and a swipe on the touchscreen away from the bevel. Users
perform a directional surface swipe gesture to activate one of up,
down, left, or right, similar to the shortcuts offered by Kurtenbach
et al.’s Marking Menus [14]. The Swipe recognizer considers a
stroke’s direction based on its starting and ending points and the
largest dimension of its bounding box. In order to minimize
confusion between swipe directions, the system does not
recognize swipes that are less than 10px (9.9 mm) long or whose
largest dimension in the bounding box is less than 3 times the
smallest (i.e. it accepts a stroke if height > width x 3 or vice
versa). A rejected stroke is logged as an error.

Finally, our motion gesture interface, Move, used four gestures
from the consensus set of motion gestures described by Ruiz et al.
[22]. We used a flick right for Next, a flick left for Previous, a
flick up for Up, and a flick down for Down. To allow our
recognizer to reliably segment these gestures from random device
motion, we also made use of the Double-Flip delimiter for motion
gestures proposed by Ruiz and Li [21]. To issue a command with
the system, a user first performs double-flip, and then performs
the appropriate motion gestures for the desired command. The
five motion gestures are depicted in Figure 2. To issue a
command, the end-user first performs a double-flip (Figure 2a)
and then performs the appropriate motion gestures (any of Figure
2b — 2e). We implemented the Move recognizer as a Hidden
Markov Model (HMM) trained with pre-segmented motion
samples from five expert users.

Our Move interface has one advantage over Tap and Swipe. With
Tap and Swipe, the screen’s input space must be modified to
support distracted input. If the screen is displaying information in
the background, for example and email message, text message, or
chat dialog, then the typical on-screen interactions of these
applications must be disabled to support the more accessible tap
and swipe gestures tailored to distracted input. In contrast, the
Move interface can be designed such that the screen continues to
function as an input modality without modification, and the
motion gestures present a shortcut for accessing the four optimal
commands. As the purpose of this paper is to contrast an
optimized tap, swipe, and motion gesture interface for distracted
input, we should note that we do not consider the costs associated
with disabling the standard interaction. We do not claim that our



tap and swipe interfaces are real-world interfaces. Instead, they
are an optimized analog to the motion gesture shortcuts, allowing
us to contrast the benefits and costs of the three input modalities.

3.2.2 Experimental Tasks

Based upon previous studies that look at evaluating interaction
techniques under split attention and concurrent with physical
motion (e.g. [3, 4, 9], we consider two scenarios of use: i)
interacting with the phone while walking and ii) in an
environment with low cognitive load but where visual demand is
at a premium (e.g. interacting with a phone while stuck in traffic).

Our study design was focused around the two scenarios of use:

e  Walking -- Interacting while walking in our course
e  Eyes-Free — Interacting with the phone held beneath a desk

As we wish to evaluate input techniques under distracted
scenarios, our first scenario, walking, requires participants to
perform commands while following a closed track in the
soundproof room. Small arrows were placed on the floor of the
room to act as a guide for participants. The course is described in
Figure 3. Participants moved along walls and diagonals from
position 1 to position 10 then repeated the course. Though
relatively small, we found that traversing the course acted as a
moderate distracter; participants had to pause at times to focus on
the small floor markers telling them their next destination. During
the walking task, participants held an object in one hand and
performed the commands with their other hand. While not an
explicit requirement, as expected all participants chose to hold the
object in their non-dominant hand and to interact with the phone
with their dominant hand.
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Figure 3. The route participants must traverse in the walking
task. Participants walk to the corners of the room in the order
given by the labels 1-10.

Our second scenario, eyes-free, was designed to mimic contexts
like driving. In early pilot studies, we evaluated using distracter
tasks like the Sustained Attention to Response Task (SART) test
[15], an evaluation of visual attention. However, during
discussion with pilot study participants, many participants noted
that, when driving, they would focus on the road during
cognitively demanding times, and would only partially shift their
attention to a smartphone device during periods of low cognitive
load (e.g. an empty street or road with no pedestrian traffic). As a
result, we made a conscious design decision to eliminate all
distracter tasks and to simply focus on interaction in scenarios
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where looking at the smartphone was not advisable. Participants
performed smartphone commands with one hand beneath the
table. With their other hand, participants were required to hold a
light object while resting the back of their hand on the table’s
surface. Again, participants chose to interact with the phone using
their dominant hand. The experiment was conducted in the same
soundproof room, reconfigured for the seated task.

3.3 Experimental Procedure

Our experiment was a 3 X 2 (3 techniques, 2 scenarios) within-
subjects design with repeated measures. The order of the
techniques (Tap, Swipe, Move) was fully counterbalanced. As our
goal was to compare techniques in each scenario separately, we
did not counterbalance scenario ordering. No comparisons
between scenarios should be drawn from our data.

Each participant began with the walking scenario. The experiment
began by demonstrating all interaction techniques to participants.

Participants then completed two four-minute blocks in the
walking scenario with each technique. The first block was a
practice block. The goal was to familiarize participants both with
the given interaction technique and with walking the track.
Following a brief break, the second block tasked participants to
maximize the number of correct interactions while walking at a
fast but comfortable pace.

Once the walking scenario was complete, a desk was positioned in
the room, and participants performed the same techniques in the
seated scenario. Participants performed four minutes of gestures
with each of the Move, Tap and Swipe techniques. No training
block was included in the seated scenario.

As part of both scenarios, participants were asked to continually
perform the available commands (e.g. one of Up, Down, Next, or
Previous). The order of the commands was randomized, but all
commands were performed in equal blocks of four. Each function
was vocally prompted on the smartphone and any detected input,
whether correct or incorrect, was recorded before the system
moved to the next command in sequence.

3.4 Measures
The software on the smartphone captured the following data
during the experiment:

Response Time: The amount of time (in ms) starting from the end
of the vocal command prompt to the first user action. For Tap and
Swipe, this time is the time at which the first touch event
encountered. For Move, response time is taken from the end of the
vocal command prompt to beginning of the Double-Flip delimiter.

Commands: The total number of commands issued in the four
minute block.

Successful Command Rate: The fraction of commands that were
recognized as the correct command by the recognizer.

During the walking scenario, the researcher also captured a set of
field notes. First, the researcher manually recorded the distance
traveled during the four minute block. As well, to measure visual
attention during the walking task, the researcher noted the number
of 5 second intervals in which participants gazed at the touch
screen, sampled every 10 seconds. Lastly, the researcher made
note of the number of times participants lost their way and had to
reorient themselves around the track as a measure of additional
cognitive load. We code the data as:

Speed: The speed of participants as measured by their distance
traveled around the track within the four minute block. We
transform this distance measure into meters per second by



counting the number of corners traversed, multiplying by distance
between corners, and dividing by 240 seconds.

Lost: The number of times participants stopped to get their
bearings and determine their next destination.

Screen Gaze: The number of five second intervals in which
participants looked at the screen at least once.

4. Results

In this section, we analyze the walking scenario and sitting
scenarios separately.

4.1 Walking Scenario
4.1.1 Response Time

Response time relates to the difficulty in mapping the given
commands to the actions required by the interaction technique
while navigating our closed course. Though we selected mappings
from gestures to command from Ruiz et al.’s consensus set [22],
we still expected a difference in reaction times of the Move
interface when compared to the arguably more “intuitive” motion
marks-like interface of Swipe and traditional widgets of Tap.

However, we found no statistical difference in response time for
any of the techniques (Figure 4a). Using Move, our participants
averaged 1040ms (S.D. = 628ms) to react from the audio cue to
the beginning of the Double Flip gesture. In contrast, participants
averaged 1037ms (S.D. = 259ms) using Swipe and had a mean
response time of 954ms (S.D. =141ms) while using Tap.

An analysis of variance with technique as a within-subjects factor
did not find a significant effect for the differences seen in
response time (F,, = 0.352, ns). The large standard deviation
while using Move seemed primarily an effect of the variability in
Success Rates with the gestures. Participants P3, P5 and P12 had
significant trouble performing motion gestures (i.e. had very low
Success Rates), and had correspondingly high Response Times
(mean response time for P3, PS5 and P12 was 1950ms).

4.1.2 Command Throughput

Throughout the four-minute sessions participants were asked to
perform as many accurate command activations as possible. As a
result, the command throughput can be estimated by considering

how many commands participants attempted to perform, whether
successful or otherwise, in the four minute session.

Figure 4b-c shows a summary of our walking condition’s Total
Commands attempted and associated Success Rate. Participants
attempted 63.2 commands (S.D. = 11.0) using our motion gestures
in Move. In contrast, participants attempted 146.5 total commands
with Swipe (S.D. = 18.9) and 164.3 commands using the Tap
interface (S.D = 16.2).

First, we note that an analysis of variance with technique as a
within-subjects factor found a significant effect on Total
Commands issued in the walking scenario (F,p, = 37445, p <
0.001). Post-hoc analysis using Bonferroni correction showed that
the difference in total commands attempted was significant:
participants issued significantly fewer commands while using
Move than with Tap or Swipe (p <0.001). Moreover, post hoc
analysis also demonstrated that participants issued fewer total
commands with Swipe than with Tap (p <0.05).

Secondly, an analysis of variance with technique as a within-
subjects factor similarly found that technique had a significant
effect on Successful Command Rate (F,,, = 40.017, p < 0.001).
Post-hoc analysis using Bonferroni correction showed significant
differences between success rate of Move and Swipe (p < 0.001),
Move and Tap (p < 0.001) and Swipe and Tap (p < 0.05).
Participants performed significantly worse in terms of success rate
with Move (M = 0.73, S.D. = 0.11) than with Swipe (M = 0.89,
S.D.=0.07) or Tap M = 0.97, S.D. = 0.02).

4.1.3 Physical Characteristics

Our last metrics — Screen Gaze, Speed, and Lost — give us insight
into the effects each technique has on user behaviors during the
walking scenario.

We first report mean Screen Gaze — the number of times
participants looked at the device's display, sampled for five
seconds every ten seconds — in Figure 4d. An analysis of variance
with technique as a within-subjects factor found a significant
effect on Screen Gaze (F,, = 4.34, p < 0.05). Post-hoc analysis
using Bonferroni correction showed significant differences
between the numbers of times participants gaze at the display with
Move when compared to Tap (p < 0.01). Specifically, participants

Figure 4. Summary of the Walking Scenario: (a) mean response time, (b) mean total commands attempted, (c) mean success
rate, (d) mean number of screen gazes, (¢) mean walking speed in m/s, and (f) mean number of times lost.
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Figure 5. Eyes-free Scenario: (a) mean response time, (b) mean total commands attempted, and (c) mean success rate.

watched the display significantly less with Move (M = 5.2, S.D. =
4.13) compared to Tap (M=10.3, S.D. = 6.4). No other significant
differences were found.

Secondly, Figure 4e shows an aggregate of walking speeds using
the three interaction techniques. Analysis of variance shows a
significant effect of technique on Speed (F,,, = 15.85, p < 0.001).
Post-hoc analysis using Bonferroni correction showed participants
walked significantly slower while using Move than while using
Tap (p < 0.05). Participants walked at an average speed of 0.8m/s.
(S.D. = 0.18m/s) with Move compared to the brisker pace of 1m/s
and 0.9m/s while using Swipe and Tap respectively.

Finally, Figure 4f shows a summary of mean times Lost (that is,
the number of times participants had to stop and reorient
themselves). Participants consistently got lost an average of two
times regardless of interaction technique used (F,,, = 1.45, p >
0.2). As expected, the majority of instances where participants
stopped to reorient themselves happened during their first session
in the Walking task, regardless of technique used.

4.2 Eyes-free Scenario

For the eyes-free scenario, we performed an analysis of variance
with technique as a within-subjects factor to find significant
effects of technique on response time, total commands, and
success rate. The results, shown in Figure 5, mirror those in our
walking scenario and can be summarized as follows:

1. There was no significant effect of technique on response time
(F2,22 = 2580, p> 005)

2.  Technique significantly affected Total Commands issued
(Fn =254.84, p < 0.001). Post-hoc analysis using
Bonferroni correction showed that participants issued
significantly fewer commands with Move than with either
Swipe (p <0.001) or Tap (p < 0.001) .Additionally,
participants issued fewer commands with Swipe than with
Tap (p <0.05).

3. Again, as expected, technique significantly affected Success
Rate (F,,, =23.616, p < 0.001). Post-hoc analysis using
Bonferroni correction found significant differences between
the success rate of participants using Move and Tap (p <
0.001), Swipe and Tap (p < 0.05) and between Move and
Swipe (p < 0.05). Success rate was significantly lower for
Move (M = 0.75, S.D. = 0.11) when compared to both Swipe
M =0.85,S.D.=0.07) and Tap (M = 0.95, S.D. = 0.04).

In all, participants did not change their behavior while interacting
in a stationary eyes free scenario from that of walking.
Participants performed significantly fewer commands with Move
M =74.5,S.D. = 10.6) than with either Swipe (M= 156.8, S.D. =
13.2) or Tap (M= 170.8, S.D. = 16.4), though their response rates
were not significantly different. Additionally, the significantly
lower success rate of 75% for motion gestures in Move mirrors
the success rate for the walking task.

178

5. Discussion

In this section, we first address the cognitive cost of motion
gestures. We then examine the issues of command throughput and
recognition. In our discussion, we focus specifically on the design
implications of the findings on cognitive cost and throughput.

5.1 Cognitive Cost

Our evaluation of motion gestures, tap, and swipe as input
modalities falls into the broad category of psychometric studies
known as Recognition Reaction Time experiments [23]. In these
experiments, an experimental subject responds to a stimulus by
planning and initiating a sequence of actions. The time between
the end of the stimulus and the initiation of the response is the
reaction time.

Many personal factors can affect deviations in reaction time—
illness, skill, gender, age, handedness, fatigue, distraction.
However, for a given controlled environment, reaction time is the
accepted measure of the relative cognitive complexity or cognitive
cost of different tasks [23]. All other factors being equal, a longer
reaction time implies a task that is more complex. One specific
example of the relationship between reaction time and cognitive
cost that has been leveraged by HCI researchers is Hick’s Law [6,
10] as a model of menu-selection complexity.

To control for personal factors, we counterbalanced order of
techniques (Tap, Swipe, Move) and used a within-subjects
experimental design. As a result, any differences in reaction time
observed between the techniques are the result of a longer
planning phase before onset of action. Techniques with a longer
planning phase are considered to have higher cognitive cost.

In our results section, we note that there was no significant
difference in reaction times while using Move, Swipe or Tap.
Statistically, users were equally able to successfully build mental
models that link physical movements with the device with the
given shortcut commands as they were to map tapping or swiping
actions to commands. There are two possible interpretations of
this datum. The first is that there is no additional cognitive
complexity associated with motion gestures. The second is that,
although there is a difference, the difference is too small to be
measured given the inherent noise associated with different
participants’ reaction times.

Regardless of which interpretation is true, the design implications
of this finding are that motion gestures are a potentially beneficial
input modality for distracted scenarios. The difference in
cognitive cost between motion gestures, tap, and swipe is
sufficiently small. Furthermore, because of other benefits
associated with motion gestures —  always-available,
proprioceptive sensing — the lack of observable increase in
cognitive cost is a positive result.
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Figure 6. Success rate of Move over a five-command sliding window of P5 (left) and P12 (right)

While reaction times were the same, we found that participants
walked significantly slower with motion gestures than with Tap in
the Walking scenario. This result surprised us, particularly
because during the Move technique, participants spent
significantly less time looking at the interface than during Tap.

This trend became apparent very early in our experiment. As a
result, we observed participants and attempted to catalogue why
participants speed varied. We noted that participants speed was
particularly affected by the recognition rate of the Move interface.
Throughout the experimental block, recognition rates would vary
naturally. As consecutive failures in recognition accumulate, we
found that participants devoted higher attention to attempting to
dislodge themselves from the performance trough. For instance,
consider Figure 6 which outlines the Move interface’s success rate
over a five-command sliding window of participants P5 and P12.
Recognition performance begins at a relatively high rate of .8 then
slowly drifts down to levels at or below .5 before improving again
over the four-minute block. As these participants approach these
minima of performance, our field notes suggest that they slowed
down and took greater care in their motion gestures. Additionally,
participants gazed at the screen more frequently during these
periods of poor performance.

From a design perspective, this does raise questions about
recognizer reliability. In our experiments, we considered
simulating reliably high recognition rates; this requirement
introduces confounds into the data. Motion gestures are
constrained by the reliability of recognizers we can design. As a
result, any realistic evaluation of motion gestures must include the
effect that natural variations in motion gesture performance will
have on end-user behavior.

While building a cognitive model of motion gestures does not
appear to be difficult for our users, the lower speed seems to
indicate that, when recognition errors occur, our participants slow
down and look at the device more often so that they can perform
motion gestures more carefully. Moreover, this trend seems to
decrease as their performance improves.

5.2 Interaction Throughput and Recognition
While motion gestures can be used as an always-available
shortcut to commands and can be invoked via proprioception
without requiring a user to gaze at the display screen, motion
gestures do take longer to perform than either a tap or a swipe.

To issue any one of the four commands with motion gestures,
participants would perform a double-flip delimiter followed by the
appropriate motion gesture. Both the delimiter and the specific
motion gesture took, on average, 650ms. As a result, a motion
gesture consumed approximately 1.5 seconds, including a brief
pause between delimiter and specific command gesture. Because
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taps and swipes consume only a fraction of a second, we would
expect that Move throughput would be lower than Tap or Swipe.

Beyond the longer time required to perform motion gestures, we
also expect that motion gestures will suffer from recognition
inaccuracies which will negatively impact throughput. Tap
requires only location mapping, and Swipe can be recognized by a
simple decision tree. In contrast, a motion gesture, measured
imperfectly by accelerometer data, requires a carefully trained
Hidden Markov Model or other trained template recognizer.

In our observations, we expected that recognizer reliability would
be poorer for motion gestures. However, the variability in
recognition rate and its effect on walking speed was something we
did not anticipate. In analyzing our field notes, one theme that
emerged from recognizer error was that repeated errors
compounded problems associated with motion gesture input.
Participants who experienced repeated failures would try to
diagnose why those recognition failures were occurring. In the
case of taps and swipes, diagnosing why an action failed was
relatively straight-forward. However, in the case of motion
gestures, participants had no way to characterize why gestures
failed. As a result, they would try to vary the intensity, the timing,
the direction, the device angle, etc. In essence, users tried to
explore the space of recognizer inputs to determine whether some
other set of parameters of movement would enhance accuracy.

There are several design implications that can be drawn from our
observations of motion gesture interaction. Overall, these can be
separated into implications for recognizer feedback, recognizer
design, and motion gesture input. First, from the perspective of
recognizer feedback, it would be beneficial to design techniques
to communicate to users the parameters of input motion being
observed by the device’s accelerometers and a comparison
between those parameters and the parameters associated with a
specific motion gesture. Then, if users fail to activate a motion
gesture, they can potentially stop, observe the desired parameters
of their command, contrast with what the phone is observing, and
more accurately diagnose recognition problems.

Second, from the perspective of recognizer design, it may be
possible to build recognizers that prevent repeated errors by
adapting in various ways to the end-user. Our recognizer was built
upon a set of models that were learned from expert users.
However, additional models that are more permissive may
increase the reliability of recognition for end-users. For example,
Negulescu et al. have explored modifying thresholds for
successful motion gesture activation based on repeated actions of
users [16]. In this work, if two similar inputs are observed, a more
permissive model with lower thresholds is used to see if the two
failed attempts could reasonably map to a specific gesture.

Finally, for any input modality, there are trade-offs. While
throughput is significantly lower for motion gestures, the cost of



the motion gesture must be balanced against the benefits of
always-available, eyes-free command activation. Users of
smartphone systems have been willing to trade off physical
keyboards on smartphones for smaller, more aesthetically pleasing
profiles that use on-screen keyboards. The use of on-screen
keyboards, however, slows text entry. Users have also been
willing to accept four- or five-inch screens for tasks like web-
browsing and email in place of larger displays. This promotes
portability, but also slows email browsing and reading. From
interviews and field notes with our participants, it seems that users
may also be willing to accept the lower throughput and
recognition errors of motion gestures if, alongside these costs, the
benefits of constant availability and eyes-free input are preserved.
Motion gestures are not a panacea for every potential input
problem faced by end-users, but, in distracted contexts, they can
serve a valuable purpose as an alternative modality.

6. Future Work

Obviously, a  better  recognition  algorithm  would
disproportionately benefit motion gesture interaction. However,
recognition algorithms are complex for motion gestures
particularly because the actual movement of the device is a hidden
model, observed imperfectly through accelerometers, and then
recognized from noisy input data caused by walking or holding
the smartphone. We continue to explore ways to increase the
reliability of recognition, including experiments with adapting
thresholds and experiments with techniques like camera-based
optical flow as another data point for our recognition algorithms.

Beyond enhancements in recognition, for any novel input
technique there is a question of long-term acceptance and use.
Some current smartphone apps support a restricted set of motion
gestures. For example, the Google App for iPhone makes use of
proximity and movement to turn on the microphone when a user
brings the smartphone to their ear. However, end-users seem
unaware of the existence of these motion gestures, and it is not
clear whether or not they are used. If motion gestures were
mapped onto a set of shortcut commands, and if they were
consistently available, end-user behavior might change. We hope
to leverage existing contexts with smartphone system software
providers to experiment with always-available input mechanisms.

7. Conclusion

In this paper, we analyze the relative cognitive cost of motion
gestures, tap and surface gestures as input for smartphone devices
under conditions of light distraction. We show that, for both
walking and eyes-free input, the cognitive cost of motion gestures
(measured as a function of reaction time) is statistically
indistinguishable from the cognitive costs of taps and gestures. As
a result, motion gestures represent a viable input alternative for
situations where eyes-free input may be required.
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