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ABSTRACT 
Designers of motion gestures for mobile devices face the 
difficult challenge of building a recognizer that can separate 
gestural input from motion noise. A threshold value is often 
used to classify motion and effectively balances the rates of 
false positives and false negatives. We present a bi-level 
threshold recognition technique designed to lower the rate 
of recognition failures by accepting either a tightly 
thresholded gesture or two consecutive possible gestures 
recognized by a relaxed model. Evaluation of the technique 
demonstrates that the technique can aid in recognition for 
users who have trouble performing motion gestures. Lastly, 
we suggest the use of bi-level thresholding to scaffold the 
learning of gestures. 
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INTRODUCTION 
Modern sensors such as accelerometers can be leveraged to 
expand a mobile device’s input space by detecting motion 
gestures – gestures that require a user to move and/or 
translate the entire device in three dimensions. A unique 
challenge in the design of motion gestures for mobile 
interaction is the need to develop recognition algorithms 
that are sufficiently powerful to both recognize a large set 
of motion gestures and to discriminate intentional gestures 
from everyday device movement. The focus of this paper is 
specifically in discriminating intentional motion gestures 
from everyday motion. Because smartphones are frequently 
carried in a purse or pocket, the accelerometers and 
gyroscopes that measure device movement are frequently 
receiving data. Without careful tuning, unintended 
commands (i.e. false positives) can be invoked. 

There are two possible techniques for segmenting a motion 
gesture from a smartphone’s input stream. The first, and 
most common, approach is to use an explicit delimiter to 
discriminate a motion gesture from everyday device 
movement [6]. Researchers have used hardware buttons, 
on-screen buttons, and specific, easy-to-discriminate 
motion gestures as delimiters. However, there are several 
situations where it is undesirable to use a delimiter. For 
example, consider using a motion gesture repeatedly to step 
through a set of objects. Performing an explicit delimiter for 
each motion gesture may frustrate end-users, particularly if 
they must repeat a large number of motion gestures within a 
restricted time. Furthermore, even if delimiters support 
reliable discrimination from an input stream, it is also 
important to determine how necessary delimiters are to the 
design of motion-gesture input. 

The second technique for discriminating motion gestures 
from random device movement is to create a threshold, i.e. 
a criterion value, that best trades-off between false positives 
(accidental activations) and false negatives (failed attempts 
to perform a gesture). If the criterion value is too 
permissive, many false positives will occur. However, if the 
criterion value is too restrictive, it may become very 
difficult for the system to reliably identify intentional user 
gestures. Designers of systems frequently use visualization 
techniques like receiver operating characteristic curves to 
identify the best criterion value for a recognizer (e.g. [1]).  
Despite this, a majority of the motion gesture research uses 
delimiters, not criterion values, presumably because of the 
difficulty of selecting a criterion value that appropriately 
balances false positives and false negatives [6]. 

In this paper, we address the challenge of non-activations 
by creating a novel, bi-level thresholding technique for 
selecting a criterion value that is appropriately restrictive 
and while not yielding a prohibitively high number of false 
negatives. Our bi-level thresholding technique works as 
follows: if a user-performed gesture does not meet a strict 
threshold, we then consider the gesture using a relaxed 
threshold – a more permissive criterion value – and wait to 
see if a similar motion follows it. Figure 1 displays a Venn 
diagram that represents our input space. The system 
recognizes a gesture either if the end-user performs a tightly 
thresholded motion gesture (i.e. success in the first 
instance), or if the user performs two relaxed thresholded 
gestures within a short period of time.  
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RATIONALE FOR BI-LEVEL THRESHOLD RECOGNITION 
Our bi-level thresholding technique is based on field notes 
of typical participant behavior during controlled studies of 
motion gesture interaction [4]. Participants frequently begin 
an experiment successfully performing motion gestures. 
Over time, however, due to the noise within our 
neurophysiological system, the participant’s action may 
drift from ideal. If a participant does not successfully 
activate a gesture, their most frequent response is to attempt 
the gesture again immediately upon recognizing failure. If 
the gesture succeeds on the second attempt, the cost of 
missed activation seems quite small. However, participants 
become frustrated if repeated attempts to activate a gesture 
also fail. As a result, they begin to alter their input patterns, 
until they find a gesture profile that is correctly recognized.  

We observe that a failure to perform a recognized gesture is 
often the result of the sensor input falling just outside of the 
recognition threshold specified by the criterion value. 
However, adjusting the criterion to recognize these gestures 
would lead to a prohibitively high rate of false positives.  

Our goal in introducing bi-level thresholding was to create 
a “soft-landing” for users who attempt a gesture and almost 
succeed at exceeding the criterion value. Rather than 
requiring the user to repeatedly attempt to match a tight 
threshold, we noted that the likelihood of observing two 
sequential gestures at a lower criterion value within a time 
period is the square of the likelihood of observing one 
instance of that relaxed-criterion gesture within the time 
period (e.g., if the odds are 1 in 10 of one relaxed threshold 
within a time period, the odds of observing two relaxed 
thresholds within that same time period are 1 in 100). This 
technique can be seen as a mediation technique that helps to 
clarify a user’s input as outlined by Mankoff et al.[3]. 
However, in contrast to simple repetition techniques, the 
goal of bi-level thresholding is adapting to the user’s first 
motion to improve the likelihood of recognition for users 
who struggle performing motion gestures. 

We hypothesized that bi-level thresholding may support 
successful gesture-from-noise discrimination in situations 
where a tighter threshold would not.  In addition, bi-level 

thresholding may also provide a mechanism for gradual 
online learning of the gesture set because users are more 
likely to succeed at performing correctly recognized 
gestures.  

IMPLEMENTING BI-LEVEL THRESHOLDING 
Bi-level thresholding is meant to be recognizer agnostic, 
applicable to both state based recognizers (e.g. hidden 
Markov models) and temporal matching algorithms (e.g. 
Dynamic Time Warping). At a high level, our technique 
can be visualized as a simple three-state finite state 
automaton (FSA), as shown in Figure 2. From the Initial 
state, if the recognizer observes a tight-threshold gesture, 
the system moves to the Recognized state and the gesture is 
recognized. If, in contrast, we observe a relaxed-threshold 
gesture, the system moves to state the Intermediate state. In 
this state, if the system receives either a tight-threshold or 
relaxed-threshold input, the system moves to the 
Recognized state and the gesture is recognized. If, instead, a 
timeout occurs, the system moves back to the Initial state. 

To evaluate our technique, we implemented bi-level 
thresholding using a hidden Markov model (HMM) 
approach [2] due to the input’s inherently stochastic nature. 
The implementation consists of a continuous HMM with 
four-state models recognizing each gesture. As features, we 
use time-ordered acceleration (in three dimensions) and 
orientation readings (three degrees of freedom). Though a 
full description of hidden Markov models is outside the 
current scope, we give a brief outline of our gesture models. 

The tight-threshold gesture models were built by having six 
expert users perform each of the gestures in our gesture set 
50 times. Though it scales as well as other HMM 
recognizers, as a proof of concept, our gesture set contains 
three gestures taken from Ruiz et al.’s consensus gesture 
set: Double Flip, Next, and Previous (see [5,6]). The HMM 
was trained using the Baum-Welch algorithm [2] on the 
pre-segmented gestures performed by our experts. The 
gesture models comprising our tight threshold were tuned 
so that three expert users can perform the gestures with 
greater than 80% accuracy over 20 instances while 
achieving no more than two false positives when tested 
with 20 minutes of background walking data. 

Figure 2. Bi-level thresholding described as a state machine. 
 

Figure 1. An illustration of the bi-level thresholding model in 
the allowable input space. 

148



 

 

The relaxed threshold is built by copying the tight-threshold 
gesture models and loosening the observation distributions 
for each state by applying a linear Gaussian blur to all 
features in each observation distribution. This produces 
three additional HMM models that are more permissive, i.e. 
that allow a greater range of values. We tune the blur to 
create an acceptable false positive rate for the gestures. For 
example, if R є (0, 1) is an acceptable false positive rate for 
the single-threshold models, then R1/2  is an acceptable false 
positive rate for the relaxed-threshold models. This ensures 
that the false positive rate for all gestures is at most R. 

Finally, we added a model that represents random device 
motion, or noise. This model was created by repeatedly 
performing a random walk of the above six models and 
using the random state transitions to saturate the entire 
space of allowable inputs with a random motion recognizer.  

As we wish for our recognizer to be always on (as opposed 
to recognizing pre-delimited content), our implementation 
links all the gesture and the noise models together with a 
start state to form a single continuous model, as in [2]. In 
this method, the Viterbi algorithm is used to consider the 
most likely sequence of states that generates given sensor 
observations. A recognized gesture is one where the Viterbi 
path ends in a gesture model’s end state. The interplay of 
the gesture models and the noise model creates the initial 
tight threshold that segments noise from gestures.  

To guide the reader’s intuition of how this recognizer 
works, consider Figure 1 showing the input space for three 
gestures. The noise model dominates the background region 
of the Venn Diagram. However, if the observations from 
the smartphone sensors lie inside the relaxed threshold, then 
the relaxed-threshold models have higher probability. 
Likewise, if the sensor observations lie inside the tight 
threshold models, then these models dominate. As noted, 
Figure 2 illustrates how recognition is performed using our 
relaxed-threshold, tight-threshold, and noise models.  

STUDY 
We evaluated bi-level thresholding to gauge its feasibility 
as a safety net for participants who have trouble performing 
gestures. The study used a within participants design asking 
eight participants to perform each of three motion gestures, 
Double-flip, Next, and Previous, 42 times each. A software 
glitch resulted in the elimination of the first gesture in each 
set, yielding 125 gestures attempted by eight participants, or 
1000 motion gestures in total. A Nexus One smartphone 
was used to perform and recognize gestures. The order of 
the gestures was randomized, with the software ensuring 
that each gesture was performed the same number of times. 

The application presented the user with a black screen. In 
the centre of the screen the word “Double-Flip”, “Next”, or 
“Previous” was presented to the user. Once the system 
detected the given gesture, the screen flashed green, 
vibrated for 200ms and preceded to the next gesture. If a 
gesture other than the given gesture was recognized (i.e. a 

Recognition Error occurred), the screen vibrated for 200ms, 
but did not move on to the next gesture. Instead, it logged 
the misrecognized attempt and presented the gesture again. 
If the participant failed to activate the given gesture within 
15 seconds, the screen flashed red for 200ms, vibrated, and 
moved on to the next gesture after logging the instance as a 
skipped gesture.  

There are two open questions which we aim to address with 
our experiment. First, is the bi-level threshold useful in 
supporting recognition? To analyze this question, we 
examined at the proportion of gestures recognized using the 
double relaxed threshold versus the number of gestures 
recognized using a tight threshold. If you consider the FSA 
in Figure 2, the tight threshold could successfully recognize 
gestures from either the Initial or Intermediate states. In 
either of these cases, the bi-level threshold provides limited 
benefit as it does not eliminate gesture attempts. It is 
unclear how common the bi-level technique will be during 
recognition. It may be the case that it increases recognition 
reliability significantly (i.e. it frequently performs the 
recognition of gestures). On the other hand, participants 
may hit the tight threshold or fail to hit a double relaxed 
threshold often enough to improve recognition rates.  

Second, we wish to determine whether the rate of skipped 
gestures can tell us anything about the potential of bi-level 
thresholding as a mechanism for scaffolding. For example, 
do users who struggle with motion gestures make increased 
use of bi-level thresholding? 

RESULTS 
During our experiment, 93% of gestures were recognized 
successfully for all users within the timeout period. The 
other 7% were skipped gestures. Moreover, the recognizer 
performed at an accuracy of 95.3% (S.D. = 6.4%) with five 
out of eight participants achieving 99.8% accuracy. Due to 
the tuned tight threshold and the given task, no false 
positives were recorded during the session. 

We analyze the behavior of our recognizer by examining 
the various recognition paths taken through the FSA (Figure 
2). For each user, we separate the proportion of successes 
recognized with a) the double relaxed threshold, b) the 
single tight threshold, and c) those recognized with the 
relaxed then tightly thresholded models (i.e. tight from the 
Intermediate). We show the various fractions in Figure 3. 

We note that 65% of recognized gestures were recognized 
using the double relaxed gesture model. Another 9% of 
successful recognitions were flagged by the single tight 
threshold model while already in the Intermediate state, i.e. 
after an initial relaxed threshold event. The remaining 26% 
of gestures were recognized using the single tight threshold, 
from the Initial state. The large proportion of successes 
caught using our bi- threshold gives some promise that the 
technique acts to improve overall efficiency. 

While an average rate of 7% of total gestures attempted 
using the bi-level threshold recognizer (SD=10.0) were 
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skipped gestures, there is variability among participants. As 
shown in Figure 4, P2 is an outlier, failing to successfully 
perform the gesture within the timeout window 30% of the 
time. P2 provides an interesting case study for our bi-level 
thresholding technique. P2 only successfully completed 
70% of the gestures, compared to over 90% for all other 
participants. Of P2’s successfully recognized gestures, 94% 
were recognized using our double-relaxed model (Figure 3) 
versus 50-66% for all other participants. P2 was an outlier 
in both the failure rate experienced performing motion 
gestures and in how frequently their successes were 
recognized using the bi-level thresholding technique. 
Although care must be taken to generalize from the 
behavior of this one participant, this participant's case study 
may indicate the potential use of the lower threshold for 
users who have trouble completing motion gestures. 

DISCUSSION  
The results of our experiment indicate that the bi-level 
thresholding technique for motion gesture recognition can 
aid in recognition of motion gestures. The recognizer was 
tuned so that expert users found it easy to use while limiting 
the number of false positives. However, though recognition 
rates were high, our novice participants had difficulty in 
consistently activating the motion gestures. Two-thirds of 
all gestures recognized during our experiment were 
recognized as a result of the double-relaxed threshold 
model of the bi-level thresholding technique. These 
gestures would need at least another attempt by the 
participant to be recognized successfully if using a similarly 
tuned single-tight threshold. The relaxed threshold acted as 
a safety net for participants who were inexperienced with 
motion gestures. An open question is whether such a safety 
net can be used to scaffold learning to perform motion 
gestures over a long period of time. 

We note that, in our experiment, we do not consider 
delimiters. It is true that, if an effective delimiter is chosen, 

then the system can use a more permissive criterion 
function -- one less likely to label movement as noise. 
However, even with delimiters, criterion functions are still 
required. To understand why, consider what happens when 
a delimiter is activated. If, after delimiter activation, the 
end-user is performing any action at all – walking, driving, 
looking at the phone, turning in a desk chair, holding the 
phone, etc. – then the accelerometer and gyroscope in the 
smartphone will receive data. If the system assumes that all 
received data constitutes a motion gesture, then a gesture 
may fire accidentally before the user has any chance to 
execute a deliberate gesture, solely based on random input. 
Regardless of whether or not delimiters are used, it is still 
necessary to create a noise model and to select a criterion 
value to separate deliberate movement from noise. 

Finally, while we focus on motion gestures as the 
application space for bi-level thresholding, we believe that 
the technique is applicable to other gestural domains, 
including surface gestures and stylus interfaces. For 
example, consider using an always available scratch-out 
gesture within a stylus program like Windows Journal. If 
the scratch-out gesture fails initially (something that 
frequently occurs), a bi-level recognition model could be 
designed that handles two poorly performed scratch-out 
gestures, thus aiding reliable recognition. 

CONCLUSION 
We present a bi-level thresholding technique to support the 
recognition of motion gestures for smartphone input. Our 
results show that, when available, the bi-level thresholding 
technique frequently catches input gestures that an 
optimized criterion function misses. The end result is that 
end-users need fewer attempts to successfully activate 
motion gestures using bi-level thresholding.  
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Figure 3. Breakdown of gestures by whether recognition 
occurred using the double relaxed model (blue), the single 
tight model (red), or the relaxed then tight model (green). 

Figure 4. Rate of skipped gestures, per participant 
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