

A Recognition Safety Net: Bi-Level Threshold Recognition
for Mobile Motion Gestures

Matei Negulescu
University of Waterloo
Waterloo, ON, Canada

mnegules@uwaterloo.ca

Jaime Ruiz
Colorado State University

Fort Collins, CO, USA
jgruiz@cs.colostate.edu

Edward Lank
University of Waterloo
Waterloo, ON, Canada
lank@cs.uwaterloo.ca

ABSTRACT
Designers of motion gestures for mobile devices face the
difficult challenge of building a recognizer that can separate
gestural input from motion noise. A threshold value is often
used to classify motion and effectively balances the rates of
false positives and false negatives. We present a bi-level
threshold recognition technique designed to lower the rate
of recognition failures by accepting either a tightly
thresholded gesture or two consecutive possible gestures
recognized by a relaxed model. Evaluation of the technique
demonstrates that the technique can aid in recognition for
users who have trouble performing motion gestures. Lastly,
we suggest the use of bi-level thresholding to scaffold the
learning of gestures.

KEYWORDS
Bi-level thresholding, motion gestures, safety net

ACM CLASSIFICATION KEYWORDS
H.5.2 [Information Interfaces and Presentation]: User
Interfaces - Interaction styles.

GENERAL TERMS
Human Factors

INTRODUCTION
Modern sensors such as accelerometers can be leveraged to
expand a mobile device’s input space by detecting motion
gestures – gestures that require a user to move and/or
translate the entire device in three dimensions. A unique
challenge in the design of motion gestures for mobile
interaction is the need to develop recognition algorithms
that are sufficiently powerful to both recognize a large set
of motion gestures and to discriminate intentional gestures
from everyday device movement. The focus of this paper is
specifically in discriminating intentional motion gestures
from everyday motion. Because smartphones are frequently
carried in a purse or pocket, the accelerometers and
gyroscopes that measure device movement are frequently
receiving data. Without careful tuning, unintended
commands (i.e. false positives) can be invoked.

There are two possible techniques for segmenting a motion
gesture from a smartphone’s input stream. The first, and
most common, approach is to use an explicit delimiter to
discriminate a motion gesture from everyday device
movement [6]. Researchers have used hardware buttons,
on-screen buttons, and specific, easy-to-discriminate
motion gestures as delimiters. However, there are several
situations where it is undesirable to use a delimiter. For
example, consider using a motion gesture repeatedly to step
through a set of objects. Performing an explicit delimiter for
each motion gesture may frustrate end-users, particularly if
they must repeat a large number of motion gestures within a
restricted time. Furthermore, even if delimiters support
reliable discrimination from an input stream, it is also
important to determine how necessary delimiters are to the
design of motion-gesture input.

The second technique for discriminating motion gestures
from random device movement is to create a threshold, i.e.
a criterion value, that best trades-off between false positives
(accidental activations) and false negatives (failed attempts
to perform a gesture). If the criterion value is too
permissive, many false positives will occur. However, if the
criterion value is too restrictive, it may become very
difficult for the system to reliably identify intentional user
gestures. Designers of systems frequently use visualization
techniques like receiver operating characteristic curves to
identify the best criterion value for a recognizer (e.g. [1]).
Despite this, a majority of the motion gesture research uses
delimiters, not criterion values, presumably because of the
difficulty of selecting a criterion value that appropriately
balances false positives and false negatives [6].

In this paper, we address the challenge of non-activations
by creating a novel, bi-level thresholding technique for
selecting a criterion value that is appropriately restrictive
and while not yielding a prohibitively high number of false
negatives. Our bi-level thresholding technique works as
follows: if a user-performed gesture does not meet a strict
threshold, we then consider the gesture using a relaxed
threshold – a more permissive criterion value – and wait to
see if a similar motion follows it. Figure 1 displays a Venn
diagram that represents our input space. The system
recognizes a gesture either if the end-user performs a tightly
thresholded motion gesture (i.e. success in the first
instance), or if the user performs two relaxed thresholded
gestures within a short period of time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MobileHCI’12, September 21–24, 2012, San Francisco, CA, USA.
Copyright 2012 ACM 978-1-4503-1105-2/12/09...$10.00.

147

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2371574.2371598&domain=pdf&date_stamp=2012-09-21

RATIONALE FOR BI-LEVEL THRESHOLD RECOGNITION
Our bi-level thresholding technique is based on field notes
of typical participant behavior during controlled studies of
motion gesture interaction [4]. Participants frequently begin
an experiment successfully performing motion gestures.
Over time, however, due to the noise within our
neurophysiological system, the participant’s action may
drift from ideal. If a participant does not successfully
activate a gesture, their most frequent response is to attempt
the gesture again immediately upon recognizing failure. If
the gesture succeeds on the second attempt, the cost of
missed activation seems quite small. However, participants
become frustrated if repeated attempts to activate a gesture
also fail. As a result, they begin to alter their input patterns,
until they find a gesture profile that is correctly recognized.

We observe that a failure to perform a recognized gesture is
often the result of the sensor input falling just outside of the
recognition threshold specified by the criterion value.
However, adjusting the criterion to recognize these gestures
would lead to a prohibitively high rate of false positives.

Our goal in introducing bi-level thresholding was to create
a “soft-landing” for users who attempt a gesture and almost
succeed at exceeding the criterion value. Rather than
requiring the user to repeatedly attempt to match a tight
threshold, we noted that the likelihood of observing two
sequential gestures at a lower criterion value within a time
period is the square of the likelihood of observing one
instance of that relaxed-criterion gesture within the time
period (e.g., if the odds are 1 in 10 of one relaxed threshold
within a time period, the odds of observing two relaxed
thresholds within that same time period are 1 in 100). This
technique can be seen as a mediation technique that helps to
clarify a user’s input as outlined by Mankoff et al.[3].
However, in contrast to simple repetition techniques, the
goal of bi-level thresholding is adapting to the user’s first
motion to improve the likelihood of recognition for users
who struggle performing motion gestures.

We hypothesized that bi-level thresholding may support
successful gesture-from-noise discrimination in situations
where a tighter threshold would not. In addition, bi-level

thresholding may also provide a mechanism for gradual
online learning of the gesture set because users are more
likely to succeed at performing correctly recognized
gestures.

IMPLEMENTING BI-LEVEL THRESHOLDING
Bi-level thresholding is meant to be recognizer agnostic,
applicable to both state based recognizers (e.g. hidden
Markov models) and temporal matching algorithms (e.g.
Dynamic Time Warping). At a high level, our technique
can be visualized as a simple three-state finite state
automaton (FSA), as shown in Figure 2. From the Initial
state, if the recognizer observes a tight-threshold gesture,
the system moves to the Recognized state and the gesture is
recognized. If, in contrast, we observe a relaxed-threshold
gesture, the system moves to state the Intermediate state. In
this state, if the system receives either a tight-threshold or
relaxed-threshold input, the system moves to the
Recognized state and the gesture is recognized. If, instead, a
timeout occurs, the system moves back to the Initial state.

To evaluate our technique, we implemented bi-level
thresholding using a hidden Markov model (HMM)
approach [2] due to the input’s inherently stochastic nature.
The implementation consists of a continuous HMM with
four-state models recognizing each gesture. As features, we
use time-ordered acceleration (in three dimensions) and
orientation readings (three degrees of freedom). Though a
full description of hidden Markov models is outside the
current scope, we give a brief outline of our gesture models.

The tight-threshold gesture models were built by having six
expert users perform each of the gestures in our gesture set
50 times. Though it scales as well as other HMM
recognizers, as a proof of concept, our gesture set contains
three gestures taken from Ruiz et al.’s consensus gesture
set: Double Flip, Next, and Previous (see [5,6]). The HMM
was trained using the Baum-Welch algorithm [2] on the
pre-segmented gestures performed by our experts. The
gesture models comprising our tight threshold were tuned
so that three expert users can perform the gestures with
greater than 80% accuracy over 20 instances while
achieving no more than two false positives when tested
with 20 minutes of background walking data.

Figure 2. Bi-level thresholding described as a state machine.

Figure 1. An illustration of the bi-level thresholding model in
the allowable input space.

148

The relaxed threshold is built by copying the tight-threshold
gesture models and loosening the observation distributions
for each state by applying a linear Gaussian blur to all
features in each observation distribution. This produces
three additional HMM models that are more permissive, i.e.
that allow a greater range of values. We tune the blur to
create an acceptable false positive rate for the gestures. For
example, if R є (0, 1) is an acceptable false positive rate for
the single-threshold models, then R1/2 is an acceptable false
positive rate for the relaxed-threshold models. This ensures
that the false positive rate for all gestures is at most R.

Finally, we added a model that represents random device
motion, or noise. This model was created by repeatedly
performing a random walk of the above six models and
using the random state transitions to saturate the entire
space of allowable inputs with a random motion recognizer.

As we wish for our recognizer to be always on (as opposed
to recognizing pre-delimited content), our implementation
links all the gesture and the noise models together with a
start state to form a single continuous model, as in [2]. In
this method, the Viterbi algorithm is used to consider the
most likely sequence of states that generates given sensor
observations. A recognized gesture is one where the Viterbi
path ends in a gesture model’s end state. The interplay of
the gesture models and the noise model creates the initial
tight threshold that segments noise from gestures.

To guide the reader’s intuition of how this recognizer
works, consider Figure 1 showing the input space for three
gestures. The noise model dominates the background region
of the Venn Diagram. However, if the observations from
the smartphone sensors lie inside the relaxed threshold, then
the relaxed-threshold models have higher probability.
Likewise, if the sensor observations lie inside the tight
threshold models, then these models dominate. As noted,
Figure 2 illustrates how recognition is performed using our
relaxed-threshold, tight-threshold, and noise models.

STUDY
We evaluated bi-level thresholding to gauge its feasibility
as a safety net for participants who have trouble performing
gestures. The study used a within participants design asking
eight participants to perform each of three motion gestures,
Double-flip, Next, and Previous, 42 times each. A software
glitch resulted in the elimination of the first gesture in each
set, yielding 125 gestures attempted by eight participants, or
1000 motion gestures in total. A Nexus One smartphone
was used to perform and recognize gestures. The order of
the gestures was randomized, with the software ensuring
that each gesture was performed the same number of times.

The application presented the user with a black screen. In
the centre of the screen the word “Double-Flip”, “Next”, or
“Previous” was presented to the user. Once the system
detected the given gesture, the screen flashed green,
vibrated for 200ms and preceded to the next gesture. If a
gesture other than the given gesture was recognized (i.e. a

Recognition Error occurred), the screen vibrated for 200ms,
but did not move on to the next gesture. Instead, it logged
the misrecognized attempt and presented the gesture again.
If the participant failed to activate the given gesture within
15 seconds, the screen flashed red for 200ms, vibrated, and
moved on to the next gesture after logging the instance as a
skipped gesture.

There are two open questions which we aim to address with
our experiment. First, is the bi-level threshold useful in
supporting recognition? To analyze this question, we
examined at the proportion of gestures recognized using the
double relaxed threshold versus the number of gestures
recognized using a tight threshold. If you consider the FSA
in Figure 2, the tight threshold could successfully recognize
gestures from either the Initial or Intermediate states. In
either of these cases, the bi-level threshold provides limited
benefit as it does not eliminate gesture attempts. It is
unclear how common the bi-level technique will be during
recognition. It may be the case that it increases recognition
reliability significantly (i.e. it frequently performs the
recognition of gestures). On the other hand, participants
may hit the tight threshold or fail to hit a double relaxed
threshold often enough to improve recognition rates.

Second, we wish to determine whether the rate of skipped
gestures can tell us anything about the potential of bi-level
thresholding as a mechanism for scaffolding. For example,
do users who struggle with motion gestures make increased
use of bi-level thresholding?

RESULTS
During our experiment, 93% of gestures were recognized
successfully for all users within the timeout period. The
other 7% were skipped gestures. Moreover, the recognizer
performed at an accuracy of 95.3% (S.D. = 6.4%) with five
out of eight participants achieving 99.8% accuracy. Due to
the tuned tight threshold and the given task, no false
positives were recorded during the session.

We analyze the behavior of our recognizer by examining
the various recognition paths taken through the FSA (Figure
2). For each user, we separate the proportion of successes
recognized with a) the double relaxed threshold, b) the
single tight threshold, and c) those recognized with the
relaxed then tightly thresholded models (i.e. tight from the
Intermediate). We show the various fractions in Figure 3.

We note that 65% of recognized gestures were recognized
using the double relaxed gesture model. Another 9% of
successful recognitions were flagged by the single tight
threshold model while already in the Intermediate state, i.e.
after an initial relaxed threshold event. The remaining 26%
of gestures were recognized using the single tight threshold,
from the Initial state. The large proportion of successes
caught using our bi- threshold gives some promise that the
technique acts to improve overall efficiency.

While an average rate of 7% of total gestures attempted
using the bi-level threshold recognizer (SD=10.0) were

149

skipped gestures, there is variability among participants. As
shown in Figure 4, P2 is an outlier, failing to successfully
perform the gesture within the timeout window 30% of the
time. P2 provides an interesting case study for our bi-level
thresholding technique. P2 only successfully completed
70% of the gestures, compared to over 90% for all other
participants. Of P2’s successfully recognized gestures, 94%
were recognized using our double-relaxed model (Figure 3)
versus 50-66% for all other participants. P2 was an outlier
in both the failure rate experienced performing motion
gestures and in how frequently their successes were
recognized using the bi-level thresholding technique.
Although care must be taken to generalize from the
behavior of this one participant, this participant's case study
may indicate the potential use of the lower threshold for
users who have trouble completing motion gestures.

DISCUSSION
The results of our experiment indicate that the bi-level
thresholding technique for motion gesture recognition can
aid in recognition of motion gestures. The recognizer was
tuned so that expert users found it easy to use while limiting
the number of false positives. However, though recognition
rates were high, our novice participants had difficulty in
consistently activating the motion gestures. Two-thirds of
all gestures recognized during our experiment were
recognized as a result of the double-relaxed threshold
model of the bi-level thresholding technique. These
gestures would need at least another attempt by the
participant to be recognized successfully if using a similarly
tuned single-tight threshold. The relaxed threshold acted as
a safety net for participants who were inexperienced with
motion gestures. An open question is whether such a safety
net can be used to scaffold learning to perform motion
gestures over a long period of time.

We note that, in our experiment, we do not consider
delimiters. It is true that, if an effective delimiter is chosen,

then the system can use a more permissive criterion
function -- one less likely to label movement as noise.
However, even with delimiters, criterion functions are still
required. To understand why, consider what happens when
a delimiter is activated. If, after delimiter activation, the
end-user is performing any action at all – walking, driving,
looking at the phone, turning in a desk chair, holding the
phone, etc. – then the accelerometer and gyroscope in the
smartphone will receive data. If the system assumes that all
received data constitutes a motion gesture, then a gesture
may fire accidentally before the user has any chance to
execute a deliberate gesture, solely based on random input.
Regardless of whether or not delimiters are used, it is still
necessary to create a noise model and to select a criterion
value to separate deliberate movement from noise.

Finally, while we focus on motion gestures as the
application space for bi-level thresholding, we believe that
the technique is applicable to other gestural domains,
including surface gestures and stylus interfaces. For
example, consider using an always available scratch-out
gesture within a stylus program like Windows Journal. If
the scratch-out gesture fails initially (something that
frequently occurs), a bi-level recognition model could be
designed that handles two poorly performed scratch-out
gestures, thus aiding reliable recognition.

CONCLUSION
We present a bi-level thresholding technique to support the
recognition of motion gestures for smartphone input. Our
results show that, when available, the bi-level thresholding
technique frequently catches input gestures that an
optimized criterion function misses. The end result is that
end-users need fewer attempts to successfully activate
motion gestures using bi-level thresholding.

ACKNOWLEDGEMENTS
Funding provided by the Natural Science and Engineering
Research Council of Canada (NSERC) and the Networks of
Centres of Excellence for Graphics, Animation and New
Media (NCE-GRAND).

REFERENCES
1. Fogarty, J., Baker, R.S., and Hudson, S.E. Case studies in the

use of ROC curve analysis for sensor-based estimates in
human computer interaction. Proc. of GI, (2005), 129–136.

2. Lee, H.K. and Kim, J.H. An HMM-based threshold model
approach for gesture recognition. IEEER Trans. on Pattern
Analysis and Machine Intelligence, 10 (1999), 961–973.

3. Mankoff, J., Hudson, S.E., and Abowd, G.D. Interaction
techniques for ambiguity resolution in recognition-based
interfaces. Proc. of UIST '00, ACM (2000), 11–20.

4. Negulescu, M., Ruiz, J., Li, Y., and Lank, E. Tap, swipe, or
move: attentional demands for distracted smartphone input.
Proc. of the AVI, ACM (2012), 173–180.

5. Ruiz, J., Li, Y., and Lank, E. User-defined motion gestures for
mobile interaction. Proc. of CHI, ACM (2011), 197–206.

6. Ruiz, J. and Li, Y. DoubleFlip: a motion gesture delimiter for
mobile interaction. Proc. of CHI. ACM (2011), 2717–2720.

Figure 3. Breakdown of gestures by whether recognition
occurred using the double relaxed model (blue), the single
tight model (red), or the relaxed then tight model (green).

Figure 4. Rate of skipped gestures, per participant

0

0.2

0.4

0.6

0.8

1

P1 P2 P3 P4 P5 P6 P7 P8

0%

10%

20%

30%

40%

P1 P2 P3 P4 P5 P6 P7 P8

150

