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ABSTRACT 
Fitts’ law has accurately modeled both children’s and adults’ 
pointing movements, but it is not as precise for modeling 
movement to small targets. To address this issue, prior work 
presented FFitts’ law, which is more exact than Fitts’ law for 
modeling adults’ finger input on touchscreens. Since children’s 
touch interactions are more variable than adults, it is unclear if 
FFitts’ law should be applied to children. We conducted a 2D 
target acquisition task with 54 children (ages 5-10) to examine if 
FFitts’ law can accurately model children’s touchscreen 
movement time. We found that Fitts’ law using nominal target 
widths is more accurate, with a R2 value of 0.93, than FFitts’ law 
for modeling children’s finger input on touchscreens. Our work 
contributes new understanding of how to accurately predict 
children’s finger touch performance on touchscreens.  
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1 Introduction  
Children are an important group to consider when designing 
touchscreen devices due to how often they interact with these 
devices for education and entertainment [15,20]. However, prior 
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Figure 1. Our 2D Fitts’ task application: (a) start screen, (b) 
start bubble, and (c) bubble target example. 
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work has shown that interacting with touchscreen devices poses 
challenges for children (e.g., lower accuracy [2,3,29] and slower 
response times [33,34]), especially for small targets. Fitts’ law is a 
model that predicts movement time in target acquisition based 
on target size and distance [9]. It is an accurate predictor of 
pointing performance in real space and with computer mice for 
both children and adults [6,13,16,18,25]. However, Fitts’ law is 
not as precise for small-target acquisition (e.g., ≤ 4 mm) [8,32]. 
This makes using Fitts’ law to examine pointing performance on 
mobile touchscreen devices problematic, since small targets are 
commonly used (e.g., around 4 mm [21]) and finger input is not 
as precise as mouse pointing (i.e., fat finger problem) [1,11,12].  

To address Fitts’ law being imprecise for small targets, Bi et 
al. [4] presented FFitts’ law. FFitts’ law takes into account the 
imprecision of finger touch input when calculating the difficulty 
of the pointing task. Bi et al. proved that FFitts’ law is more exact 
than Fitts’ law for small-target acquisition with finger input on 
touchscreens for adults. However, since children’s touch 
interactions are less accurate [3,29] and more variable [28,29], it 
is unclear whether Fitts’ law or FFitts’ law would be the better 
model for children for small-target acquisition on touchscreens. 

We conducted a study of a 2D target acquisition task on a 
smartphone with 54 children (ages 5-10). Children in this age 
range are of particular interest because of the rapid cognitive 
and motor development that occurs [22,26]. To gamify the task 
for children, we developed a Bubble Pop application (Figure 1). 
Incorporating gamification elements in empirical studies has 
been shown to increase completion rates for children [5]. We 
analyzed the data using Fitts’ law, both nominal and effective 
width [18], and FFitts’ law [4]. We found that Fitts’ law, using 
nominal width, is more accurate than FFitts’ law for modeling 
children’s finger input on touchscreens. Fitts’ law using effective 
target width performed the worst. Our findings contribute new 
understanding of how to predict children’s finger touch 
performance more accurately on touchscreens.  

2 Background and Related Work 
Fitts’ law (Eq. 1) is a model that predicts movement time in 
target acquisition based on target size and distance [9]. Fitts’ law 
has been used to evaluate the throughput of different input 
devices and interaction techniques [6,18,23].  

𝑀𝑇 = 𝑎 + 𝑏 ∙ 𝐼𝐷  (1)  𝐼𝐷 =  log2 (
𝐴

𝑊
+ 1) (2) 

In Equation 1, MT is movement time, ID is the index of 
difficulty (measured in bits), and a and b are empirically 
determined constants. The index of difficulty (ID) represents the 
difficulty of the task (Eq. 2). In Equation 2, A is target amplitude 
(i.e., distance from starting location to center of target) and W is 
the width of the target. Fitts’ law reveals a speed-accuracy 
tradeoff in target acquisition, i.e., the less precise the task the 
faster it is to accomplish and vice versa. Previous work has also 
proposed using effective target width (We), which aims to 
normalize the target width by modifying the width based on the 
distribution of touchpoints (𝜎) from all of the users [18]. The 

underlying assumption is that, if there is a high variability in the 
touchpoint distribution, then the user chose to be faster rather 
than accurate; therefore, the effective width increases to 
compensate for the faster movement time. Likewise, if the 
distribution is smaller, then the user focused more on accuracy, 
resulting in a smaller effective target width. The Fitts’ law 

effective width equation replaces W with We =√2𝜋𝑒𝜎, in which  
𝜎 is the standard deviation of the distribution of touchpoints. 

Bi et al. [4] proposed FFitts’ law, which interprets the 
variability in the distribution of touchpoints from finger input as 
a result of the relative precision governed by the speed-accuracy 
tradeoff and the absolute precision of finger touch input. FFitts’ 
law modifies effective width by replacing We with 

√2𝜋𝑒(𝜎2 − 𝜎𝑎
2); 𝜎𝑎 reflects the absolute precision of the input 

finger, which is used to compensate for the natural variability in 
finger input. Bi et al. found that FFitts’ law was more accurate 
than Fitts’ law for modeling adults’ finger input on smartphones. 
However, since Bi et al. only examined FFitts’ law with adults, it 
is unclear if it would be accurate in modeling children’s finger 
input for small targets on touchscreens.  

Previous studies have shown that Fitts’ law can model 
children’s pointing movements both in real space [16,24,25,30] 
and with computer mice [13,14], and that younger children 
perform worse than older children and adults [13,24,25,30]. 
Hourcade et al. [13] conducted a study examining pointing task 
performance for small targets using computer mice with young 
children (ages 4 and 5) and adults. They found that Fitts’ law 
modeled children well only when they first entered the target, 
and higher correlation coefficients when using nominal target 
width compared to effective width. Prior work has also applied 
Fitts’ law to examining children’s performance on touchscreens 
[7,27]. Chang et al. [7] analyzed touchscreen touch interactions 
from children (ages 11-14), adults (ages 20-28), and older adults 
(ages 65-84). They found that the older adults’ and children’s 
performance was worse than adults. We go beyond Chang et al. 
by comparing three different models: Fitts’ law using nominal 
widths, effective widths, and FFitts’ law. Our study, to the best of 
our knowledge, is the first study to examine Fitts’ law using 
effective widths and FFitts’ law with children and touchscreens.  

3 Method and Design  
In our study, each child performed a 2D Fitts’ law target 
acquisition task. We created a Bubble Pop application in Unity 
[35], in which different sized bubbles (i.e., targets) would appear 
on the screen in different locations (Figure 1c). The bubbles were 
solid circles that would “pop” (i.e., disappear) when touched. We 
instructed the children to hold the phone with their non-
dominant hand and touch the bubbles with a finger on their 
dominant hand. We did not constrain the children to a specific 
finger, allowing them to interact with the smartphone naturally; 
the majority used their index finger. The children were awarded 
a small prize (e.g., stickers) after completing the study, which 
took five to ten minutes. Our protocol was approved by our 
Institutional Review Board. The application was run on a 
Samsung Galaxy S9 smartphone running Android OS.  
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Our application had seven different levels, described below. 
At the beginning of each level, a 15 mm diameter bubble labeled 
“start” would appear in the center of the screen (Figure 1b). The 
start bubble was not used for analysis, instead it was used to 
control the location of the first touch position. Once a bubble 
was successfully touched the current bubble would disappear 
and the next bubble would appear in a different location, which 
is consistent with prior Fitts’ law studies [17,19]. If the bubble 
was not touched successfully the application would not move on 
until the bubble was successfully acquired in order to control the 
amplitude of the next target. The study included 6 amplitude (A) 
× width (W) conditions, with 2 levels of A (40, 60 mm) and 3 
levels of W (4.8, 9.6, 14.4 mm), resulting in an ID ranging from 
1.92 to 3.75 bits (Eq. 2) (consistent with Bi et al. [4]). W was the 
diameter of the bubble, and A was the distance from the center 
of the previous bubble to the center of the current bubble. Each 
level had a total of 12 bubbles, not including the start bubble.  

Level 1 was used as training for the children to get familiar 
with the task and was not used for analysis. W remained at 14.4 
mm, and A varied between 40 mm and 60 mm. Level 2 was used 
to calculate the absolute precision of finger input (𝜎𝑎) for FFitts’ 
law [4]. W remained at the smallest value (4.8 mm) to be 
consistent with Bi et al.’s study [4]. The children were instructed 
to lift their finger off the screen after touching a bubble, rest it 
for approximately 1 second on the table, and then touch the next 
bubble. This allowed for the calibration to not be influenced by 
the speed-accuracy tradeoff and is consistent with Bi et al.’s task 
procedure with adults. Levels 3 to 7 are consistent with 2D Fitts’ 
tasks. Each A × W combination appeared ten times, twice per 
level, resulting in a mix of A and W per level. The order of A × W 
combinations was originally randomized and then used for every 
child. However, if the children missed a bubble on their first try, 
the current condition (A × W) would appear again. We had the 
children redo the bubble conditions missed on the first try 
because children have high error rates [33] and we wanted all 
the children to have the same number of successful touches 
when comparing the models. The children were instructed to 
touch the bubbles as quickly and as accurately as they could.  

3.1 Participants 
The participants in our study included 54 children, ages 5 to 10 
(M = 7.26, SD = 1.48): 6 five-year-olds, 13 six-year-olds, 14 seven-
year-olds, 7 eight-year-olds, 10 nine-year-olds, and 4 ten-year-

olds. Thirty children (56%) were female, 9 were left-handed and 2 
were ambidextrous. The children were recruited at the Florida 
Museum of Natural History, where the study was also run.  

4 Data Analysis and Results  
We analyzed the data from the touch interactions using Fitts’ 
law, both nominal (Eq. 2) and effective target width versions, and 
FFitts’ law. Due to children dragging their touches [28,34], we 
used the touch-down position as the default touch point, instead 
of the take-off position used in Bi et al.’s study [4].  

We only examined the touch points from the children’s first 
touch attempt on a target, whether they touched the target or 
missed. We labeled touch points that were more than 11 mm 
from the center of the target as outliers and did not include them 
in analysis. The 11 mm value was determined by examining the 
pattern of distribution for touch distances across all children. We 
removed 204 touch events as outliers (4.5%), leaving a total of 
4,365 touch events (623 of those from Level 2 to calculate σa).  

4.1 Error Rate and Dispersion of Touch Points 
The children missed on the first try 32.7% of the time for the 
finger calibration task (Level 2), and 13.9% for the 2D Fitts’ tasks 
(Levels 3 to 7). The higher error rate for the finger calibration 
task is most likely due to only including the smallest target size 
(4.8 mm). Table 1 shows the error rates per A × W combination. 
The error rates were higher for the smallest target size, and the 
highest error rate occurred for the smallest target that was 
furthest away (33%), which is consistent with prior work [4,13].  

We also investigated the dispersion of touch points (Table 1). 
We computed 𝜎 by calculating the standard deviation (SD) of the 
distance, in mm, between the target center and the touch point. 
The SD for the finger calibration task (𝜎𝑎) was 1.590148 mm. The 

differences between 𝜎  and √(𝜎2 − 𝜎𝑎
2)  varied regardless of 

target size, which is inconsistent with prior work [4].  

4.2 Fitts’ Law and FFitts’ Law  
We computed movement time (MT) as the time, in ms, it took the 
child to touch the screen after the target appeared. We only 
examined successful target acquisitions when computing MT. 
Touch points that were more than three SDs away from the 
mean of MT were marked as outliers and removed from analysis 
(35 touch points). While 40 mm × 9.6 mm and 60 mm × 14.4 mm 

A × W 
(mm) 

𝝈 √(𝝈𝟐 − 𝝈𝒂
𝟐) Error 

Rate 
IDn We = √𝟐𝝅𝒆𝝈 IDe √𝟐𝝅𝒆(𝝈𝟐 − 𝝈𝒂

𝟐) IDf Time (ms) [SD] 

40 × 4.8 1.591275 0.059879 26.7% 3.22 6.57 2.82 0.25 7.35 745.31 [94.87] 

60 × 4.8 1.712747 0.636342 33% 3.76 7.07 3.24 2.64 4.57 787.88 [100.63] 
40 × 9.6 1.747563 0.724849 5.3% 2.37 7.23 2.71 2.98 3.84 678.81 [82.36] 
60 × 9.6 1.605135 0.218833 4.4% 2.86 6.65 3.33 0.91 6.07 686.45 [82.66] 

40 × 14.4 1.815423 0.875894 0.92% 1.92 7.52 2.66 3.64 3.59 642.35 [69.64] 
60 × 14.4 1.750543 0.732004 0.37% 2.37 7.23 3.22 3.02 4.38 648.70 [70.77] 

Table 1.  Touch point dispersion, error rate, and index of difficulty (ID) per amplitude (A) × width (W). Fitts’ law using 
nominal target widths (IDn), Fitts’ law using effective target widths (IDe), and FFitts’ law (IDf). 
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result in the same ID (Table 1), we did not average the MTs to 
avoid confounds [10]. We calculated regression results with the 
six conditions to be consistent with Bi et al. [4]. Figure 2 shows 
the regression results for: Fitts’ law using nominal target widths 
(IDn), effective target widths (IDe), and FFitts’ law (IDf). The R2 
values were: IDn 92.8%, IDe 7.6%, and IDf 21.3%. The IDn model 
had the strongest fit for children’s finger input on touchscreens, 
and the IDe model was the worst.  

We analyzed the ID values across the three models per A × W 
combination in Table 1. The IDf values were higher than the IDn 

and IDe values for every A × W condition. Also, the IDn values 
consistently decreased as the target sizes increased (i.e., lower 
index of difficulty for larger targets), but the IDe and IDf values 
did not. For example, the index of difficulty for 60 mm × 9.6 mm 
(6.07 bits) was higher than 60 mm × 4.8 mm (4.57 bits) for IDf.  

5 Discussion  
Our results with children and Fitts’ law are consistent with the 
speed-accuracy tradeoff when examining movement time; the 
smallest target over the longest distance had the slowest 
movement time (788 ms), while the largest target over the 
shortest distance had the fastest movement time (642 ms). 
However, the index of difficulty was lower for the smallest 
targets when examining IDe and IDf (Table 1). Having a lower 
index of difficulty and slower movement time does not follow 
Fitts’ law, which states that smaller targets are more difficult and 
take longer to acquire. Therefore, the difficulty of the task was 
not accurately reflected by IDe and IDf in our study. 

Effective target width aims to normalize the target width 
by modifying the width based on the distribution of touchpoints 
(𝜎) from all of the users [18,31]. For effective width to accurately 
normalize the target width based on performance, the conditions 
with faster movement times need to have a larger touchpoint 
distribution, which will increase the effective width (i.e., lower 
index of difficulty). However, we did not see that occur. The 
faster movement times did not correspond to the largest 𝜎 
values. For example, 60 mm × 4.8 mm had a higher distribution 
(1.71) than 60 mm × 9.6 mm (1.61), but slower movement time. In 
Bi et al. [4], the 𝜎 values consistently increased as target sizes 
increased; however, our 𝜎 values varied between target sizes. 
Since children’s touch interactions are more variable [28,29] than 
adults a higher touchpoint distribution does not inherently mean 
that the children were prioritizing being faster than accurate, 
which is the underlying assumption behind effective width. 

Similar to effective width, FFitts’ law did not have the highest 
index of difficulty for the smallest target over the longest 

distance. FFitts’ law modifies the effective width equation by 
considering finger touch precision (𝜎𝑎) when examining the 
distribution of touchpoints. Our 𝜎𝑎 for children (1.59 mm) was 
similar to Bi et al.’s result of 1.5 mm for the 2D Fitts’ task for 
adults, which shows that the children had a similar precision 
level with larger targets (4.8 mm) as the adults did with smaller 
targets (2.4 mm). Even though the 𝜎𝑎 values were close between 
adults and children, our high variability in 𝜎 values lowered the 
regression result for FFitts’ law and for effective width.  

The variability in 𝜎 may be due to the children’s motor 
development, since the children in our age range (ages 5-10) are 
still undergoing rapid motor development [26]. Prior work has 
shown that touchscreen devices pose challenges for children 
(e.g., lower accuracy [2,3], higher touch-offset [28,29]). 
Therefore, the variability in 𝜎 is most likely a product of the 
children’s motor development affecting touchscreen input 
behavior. Fitts’ law using nominal target widths is the most 
accurate predictor of children’s pointing performance on 
touchscreens, which has implications in evaluating input 
techniques and assessing children’s fine motor control. 

6 Limitations and Future Work 
While our work contributes new understanding on modeling 
children’s finger input on touchscreens, there are limitations. We 
only conducted a 2D target acquisition task, while Bi et al. [4] 
examined FFitts’ law in a 1D and 2D target acquisition task and a 
touchscreen keyboard typing task. Children’s touchpoint 
distribution could have less variability between target sizes 
during a different Fitts’ task. Future work should examine FFitts’ 
law with children in different tasks, as well as replicate our study 
with adults to compare against Bi et al.’s study. Also, we only 
compared three models. Future work can investigate other 
models for children. Our study points to new investigations into 
when the three different Fitts’ law models should be applied.  

7 Conclusion 
We conducted a 2D target acquisition task with 54 children (ages 
5-10) on a smartphone. We analyzed the touch data using Fitts’ 
law using nominal target widths, effective target widths, and 
FFitts’ law. We compared how the different models predicted 
movement time for children’s finger input on touchscreens and 
found that Fitts’ law using nominal widths was the most 
accurate. Fitts’ law using effective widths performed the worst. 
Our work contributes new understanding of how to accurately 
predict children’s finger touch performance on touchscreens. 

     

Figure 2. Regression Results for Movement Time (ms) vs IDn (left), MT vs IDe (middle), and MT vs IDf (right).  
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