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ABSTRACT 
Mode switching allows applications to support a wide range of 
operations (e.g. selection, manipulation, and navigation) using a 
limited input space. While the performance of different mode 
switching techniques has been extensively examined for pen- and 
touch-based interfaces, investigating mode switching in 
augmented reality (AR) is still relatively new. Prior work found 
that using non-preferred hand is an efficient mode switching 
technique in AR. However, it is unclear how the technique 
performs when increasing the number of modes, which is more 
indicative of real-world applications. Therefore, we examined the 
scalability of non-preferred hand mode switching in AR with two, 
four, six, and eight modes. We found that as the number of modes 
increase, performance plateaus after the four-mode condition. We 
also found that counting gestures have varying effects on mode 
switching performance in AR. Our findings suggest that modeling 
mode switching performance in AR is more complex than simply 
counting the number of available modes. Our work lays a 
foundation for understanding the costs associated with scaling 
interaction techniques in AR. 
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1 Introduction 
Mode switching is an effective way to support a variety of 
operations (e.g., selection and manipulation) using a limited input 
space. Previous studies have investigated the performance of 
different mode switching techniques for pen- and touch-based 
interfaces [4, 7, 10, 15–17, 21, 23]. Li et al. [10] explored five 
different mode switching techniques for pen-based interfaces and 
found that the use of the non-preferred hand to switch modes was 
the most efficient and highest-rated. Non-preferred hand mode 
switching was also highly rated in touch-based interfaces [21]. 
Prior work examined the scalability of non-preferred hand as a 
mode switching technique for pen-based interfaces and found that 
it can be modeled by the Hick-Hyman law [15, 16].  

While mode switching has been extensively examined for 
pen- and touch-based interfaces, mode switching in augmented 
reality (AR) is still relatively new. AR headsets allow users to see 
and interact with virtual objects projected onto a view of the real 
world. Users can interact with virtual objects through gaze, speech, 
and hand gestures. Smith et al. [19] investigated five different 
mode switching techniques for AR and found that the use of the 
non-preferred hand was the most efficient technique for mode 
switching. Although research has found that non-preferred hand 
is an efficient mode switching technique in AR [19, 21], it is still 
unclear how this technique performs as the number of modes 
increases beyond two. 

We conducted a study examining the scalability of non-
preferred hand mode switching in AR with two, four, six, and 
eight modes. During the study, participants used different non-
preferred hand gestures to control the mode of a virtual object in 
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an AR headset. Each mode required participants to decide between 
a combination of shape (sphere or cube) and color (red, green, blue, 
or yellow). We found a significant increase in time between the 
two- and four-mode conditions; however, as the number of modes 
continued to increase, participants’ performance plateaued 
resulting in no significant difference in task completion time for 
the four-, six- and eight-mode conditions. Our results suggest that 
increasing the types of decisions the user must make is more 
costly than increasing the number of modes. Based on these 
findings, we argue that more complex behaviors are involved for 
mode switching in AR than in pen- and touch-based interfaces.  

Our examination into the scalability of non-preferred hand 
mode switching in AR provides the following insights: 

1. Modeling mode switching performance in AR is more 
complex than simply counting the number of available 
modes, requiring a more in-depth analysis into the types 
of decisions being made and the presentation of modes.  

2. Designers should consider how the complexity of 
articulating different hand gestures affects mode-
switching performance. 

We view our work as a starting point for understanding the costs 
associated with scaling interaction techniques in AR. This study 
provides new insights for developing mode-based AR applications. 

2 Related Work 
Prior work has focused on creating better interaction techniques 
for mode switching [10, 19–21, 23] and evaluating the scalability 
and performance of these techniques [13, 15, 16]. Researchers 
have created different mode switching techniques for pen-based 
interfaces [7, 10, 23], touchscreens [21], large displays [27], virtual 
reality [20], and augmented reality [19]. We focus our review on 
non-preferred hand mode switching, mode switching in AR, and 
modeling performance of mode switching techniques. 

2.1 Non-Preferred Hand Mode Switching 
Previous research has identified mode switching using the non-
preferred hand as a technique that balances speed and accuracy. 
Li et al. [10] was the first to identify the non-preferred hand 
technique as a viable option for mode switching. They compared 
five different methods for pen-based interfaces, ranging from 
pushing a button on the pen to increasing the pressure of the pen 
to switch modes. They found non-preferred hand performed the 
best based on user preference, speed, and error rate. Lank et al. [7] 
extended this work to show how mode switching with the non-
preferred hand can be done concurrently while the other hand is 
drawing with the pen. Ruiz and Lank [16] showed the advantages 
of bimanual pen interaction even when the number of modes 
increased. Surale et al. [21] further investigated mode switching 
in touch-based interfaces also finding that the non-preferred hand 
is the most efficient interaction for mode switching. 

2.2 Mode Switching in AR 
More recently, prior work on mode switching in AR focused on 
comparing different techniques for selecting modes, including 

using the non-preferred hand. Smith et al. [19] evaluated five 
different mode switching techniques tailored to AR headsets, 
ranging from a physical button to voice-triggered interaction. Out 
of these five, they found that using the non-preferred hand to 
perform gestures to switch modes was the most efficient, 
balancing speed, error rate, and the ability to scale to a large 
number of modes. This aligns with previous findings for pen and 
touch interfaces. Likewise, Surale et al. [20] compared different 
dominant and non-dominant hand techniques in AR and also 
found that non-dominant techniques were faster and more 
accurate. However, both studies aimed to understand which 
techniques were more efficient and suitable for AR. Our goal is to 
understand how the non-preferred hand technique scales as the 
number of modes increases. 

2.3 Modeling Mode Switching 
Prior work has focused on understanding how increasing the 
number of modes affects mode switching performance in pen-
based interfaces. As mentioned above, Ruiz and Lank [16] showed 
how concurrent mode switching scaled to three- and four-mode 
interaction conditions. Their study suggests that mode switching 
time increases with respect to the number of modes, in accordance 
with the Hick-Hyman Law [3, 5]. They later supported this with a 
follow-up study [15] that modeled performance for two, four, six, 
and eight modes. 

The Hick-Hyman Law states that the relationship between the 
time it takes to make a decision (i.e., response time) increases 
logarithmically with the number of choices. In the study by Ruiz 
et al. [15], participants completed tasks with increasing numbers 
of modes (up to eight), varying the thickness and color of their 
pen strokes as they drew on a tablet. Analysis of the participants’ 
task times followed a logarithmic increase with an increase in 
modes, showing that non-preferred hand mode switching can be 
modeled using the Hick-Hyman Law. We seek to extend this work 
for mode switching in AR, particularly in finding if the increase in 
modes still follows the same model. It is possible that the increase 
in complexity of remembering and performing gestures in AR 
causes performance to scale differently compared to pressing 
buttons in a pen-based interface. 

3 Mode Switching Gesture Selection  
Before examining how increasing the amount of modes affects 
mode switching performance in AR, we first needed to determine 
what interaction technique to use for our study. Smith et al. [19] 
found that the non-preferred hand was the most efficient 
technique in AR, so we decided to use the non-preferred hand to 
examine mode switching scalability in AR. Next, we needed to 
determine which non-preferred hand gestures to use for our study. 

Surale et al. [20] presented six classes of mid-air mode-
switching gestures: 1) finger pinching, 2) finger extension, 3) 
closed-hand gestures, 4) open-hand gestures, 5) hand-raising, and 
6) hand-to-body gestures. When choosing gestures for our study, 
we needed gestures that would stay within the sensor recognition 
area, therefore we excluded hand-raising and hand-to-body. We 
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also excluded open- and closed-hand gestures because we needed 
gestures to correspond to a wider range of modes to examine 
scalability (i.e., not just two modes for open and close). Thus, we 
were left with finger pinching and finger extension gestures.  

In our study, we used a Leap Motion hand controller [8] to 
track the participants’ hand gestures. When testing gestures, we 
noticed that the built-in gesture recognizer was unreliable in 
classifying and differentiating pinching gestures, which is 
consistent with prior work [20]. Therefore, we excluded finger 
pinching gestures and only used finger extension gestures. In 
determining the specific finger extension gestures, they needed to 
be sequential (i.e., have a natural order in articulation) and 
chorded (i.e., allow stacking gestures) to remain consistent with 
previous work on the scalability of mode switching [18, 20]. We 
chose counting as a sequential gesture with palm orientation to 
allow for chording. Therefore, our final set of gestures included: 
1-palm, 1-back, 2-palm, 2-back, 3-palm, 3-back, 4-palm, and 4-back 
(Figure 1). It should be noted that the 3-palm and 3-back gestures 
utilized the thumb, index, and middle fingers to resolve 
misclassifications between the gestures; a common solution found 
in previous literature [2, 11] to account for this misclassification. 

4 Experiment  
In this section, we present a study examining the scalability of 
non-preferred hand mode switching in AR that is based on the 
study Ruiz et al. [15] conducted for pen-based interfaces. 

4.1 Participants 
We had 31 adult participants in our study, ages 18 to 29 years (M 
= 20.9, SD = 2.55), none of whom were color blind. Eleven of our 
participants were female and 55% of our participants have had 
some prior experience interacting with AR devices. From the 31 
participants, we excluded data from three; two due to equipment 
failure and one who withdrew from the study. Therefore, we 
report data for 28 total participants. All the participants were 
recruited from a local university, and either received course credit 
as compensation for their participation, or voluntarily 

participated without compensation. Our protocol was approved 
by University of Florida’s Institutional Review Board (IRB). 

4.2 Apparatus 
The experiment was conducted using the Meta 2 AR headset [12] 
tethered to a PC. The headset features an LCD display, with a 
resolution of 2560 x 1440px at a 72Hz refresh rate, projected onto 
a two-way mirrored lens allowing for a 90˚ field of view. A Leap 
Motion hand controller [8] attached to the Meta captured 
participants’ hand movements, and the virtual environment was 
developed in Unity [24], a game development platform. 

4.3 Task 
Our experiment was separated into two tasks: 1) a gesture 
articulation task and 2) an object manipulation task. Participants 
were seated for both tasks to ensure no bias of fatigue from 
standing for an extended period of time. The goal of our gesture 
articulation task was to introduce and collect training samples of 
each gesture for each participant. We had participants perform 
each gesture four times and used the gesture data collected to train 
our recognizer for use in the object manipulation task. We utilized 
user-dependent sampling for our experiment since prior work [22, 
25, 26, 29] has found that user-dependent recognition (i.e., testing 
data on training samples from the same user/source) results in 
more accurate recognition than user-independent sampling. The 
gesture articulation task took approximately five minutes. 

We conducted an object manipulation task to examine the 
scalability of non-preferred hand modes for mode switching in AR. 
We based our task on Lank et al.'s [7] pen-based line cutting task, 
in which participants had to draw a line to bisect two lines. 
However, in order to adhere to more common interactions in AR 
and VR interfaces we modified the task from line drawing to 
object manipulation. We chose object manipulation because prior 
work has used it for examining mode switching techniques in AR 
[19]. During the object manipulation task, participants had to grab 
and move a virtual object (sphere or cube) from left to right, 
bisecting two vertical lines. The virtual object and lines were in 
the foreground of the virtual environment, and an information 

 

 

Figure 1. Gestures for non-preferred hand mode 
switching: a) 1-back, b) 2-back, c) 3-back, d) 4-back, e) 1-
palm, f) 2-palm, g) 3-palm, and h) 4-palm. 

 

Figure 2.  The task setup with the virtual object positioned 
to the left, followed by two vertical lines, and an 
information panel in the background displaying the 
mode indicator (annotated in figure).  
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panel was in the background. The information panel consisted of 
a mode indicator, indicating the intended mode of the virtual 
object, trial and block counters, and statistics on the amount of 
errors and average trial time per block (see Figure 2). 

The participants were instructed to 1) use their non-preferred 
hand to change the mode of the virtual object to the indicated 
mode, 2) use their preferred hand to grab and move that object 
from left to right, bisecting the two lines, then 3) release the object 
to the right of the rightmost line. 

4.4 Design and Procedure 
To analyze the scalability of modes, we examined four different 
mode conditions during the object manipulation task (two-, four-, 
six-, and eight-mode). Each participant performed the conditions 
in chronological order, instead of using counterbalancing, to be 
consistent with Ruiz et al.'s [15] study in modeling pen-based non-
preferred hand mode switching. We were concerned that initially 
introducing a large amount of information to the user (i.e., starting 
with eight modes) would increase cognitive load for the task and 
would require extensive training not feasible within the time 
constraints of a single study session. However, by controlling the 
mode condition order, we could effectively manage the amount of 
new information presented to the participant without them 
feeling overwhelmed or increasing mental fatigue.  

In our experiment, each participant completed twelve blocks 
of the object manipulation task, separated into three blocks per 

mode condition (4 mode conditions x 3 blocks each = 12 total 
blocks), shown in Table 1. The first block for each condition was a 
practice block where participants familiarized themselves with 
the introduced modes and mechanics of the experiment. After the 
practice block, the participant would then complete the two 
experimental blocks. The first experimental block balanced the 
occurrences of available modes (unweighted-mode block), whereas 
the second experimental block put more weight on the newly 
introduced modes (weighted-mode block), difference shown in 
Table 1. We designed our weighted-mode block to represent real-
world applications in which some modes will be used more 
commonly than others, consistent with Ruiz et al [15]. We 
recorded trial times and errors for analysis (practice block data 
was not included in any analysis). 

The procedure for each trial follows: 1) the mode indicator 
would appear after a two-second time delay, 2) the participant 
would then complete the mode switch for the indicated mode and 
the object manipulation task, 3) the current trial would end when 
the participant released the object. The participants were given 
the opportunity to take breaks between each individual block, and 
after three blocks of each condition the participants completed a 
subjective survey about their experience for that condition. We 
collected data from 5,376 trials (28 participants x 4 mode 
conditions x 2 experimental blocks x 24 trials).  

Mode options ranged between two shapes (sphere or cube) 
and four colors (red, green, yellow, blue); these options were 
balanced through a Latin Square design. Recall our selected 
gestures from Section 3 are 1-palm, 1-back, 2-palm, 2-back, 3-palm, 
3-back, 4-palm, and 4-back (Figure 1). Hand orientation (i.e., palm 
or back) controlled the shape while counting gestures (i.e., the 
number of fingers) controlled the color. In the two-mode 
condition, participants only changed the shape of the object, 
meaning they only altered their hand orientation. For the rest of 
the mode conditions (i.e., four-, six-, and eight-mode) the modes 
changed in both shape and color. For example, in the four-mode 
condition, a participant could switch between a red sphere, red 
cube, yellow sphere, and yellow cube. The hand orientation would 
change the shape (e.g., back orientation for a sphere), and the 
counting gesture would then control the color (e.g., one finger for 
red). Therefore, based on the example, if the participant completed 
a back gesture with one finger, then the mode would be a red 
sphere. We explained the color and shape gesture mappings to 
participants before each block. For each trial, the mode 
presentations were randomized such that the same mode would 
not appear consecutively more than twice. 

5  Results 
In this section we examine 1) errors associated with the object 
manipulation task, 2) mode switching trial times, and 3) evaluate 
our results based on the Hick-Hyman Law. 

Block Design for Object Manipulation Task 

Mode 
Cond. Block Block Type 

Available Modes 
(# of Trials) 

Total 
Trials 

two- 

1 practice m1 & m2 (5 each) 10 

2 experimental (u) m1 & m2 (12 each) 24 

3 experimental (w) m1 (6), m2 (18) 24 

four- 

4 practice 
m1 & m2 (2 each) 
m3 & m4 (5 each) 

14 

5 experimental (u) m1 - m4 (6 each) 24 

6 experimental (w) 
m1 & m2 (3 each) 
m3 & m4 (9 each) 

24 

six- 

7 practice 
m1 - m4 (2 each), 
m5 & m6 (5 each) 

18 

8 experimental (u) m1 - m6 (4 each) 24 

9 experimental (w) 
m1 - m4 (2 each), 
m5 & m6 (8 each) 

24 

eight- 

10 practice 
m1 - m6 (2 each), 
m7 & m8 (5 each) 

22 

11 experimental (u) m1 - m8 (3 each) 24 

12 experimental (w) 
m1 - m6 (2 each), 
m7 & m8 (6 each) 

24 

Table 1. Block design for object manipulation task. 
Unweighted-mode blocks denoted by u and weighted-mode 
blocks denoted by w. Mode-1 is denoted by m1, mode-2 by 
m2, etc. Each mode condition is differentiated by color: 
two- (grey), four- (green), six- (blue), and eight- (orange).  
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5.1 Error Analysis 
Similar to prior work [10, 19–21, 23], we examined two types of 
errors: mode errors and crossing errors. Mode errors occurred 
when the object was in the incorrect mode state at the time of a 
grab event (e.g. blue cube was grabbed when the intended mode 
was yellow sphere). Crossing errors occurred when the 
participant failed to bisect both vertical lines with the grabbed 
object. This measure captures errors related to crossing accuracy 
and participants intentionally aborting the object manipulation 
task. Mode and crossing error percentages are listed in Table 2. 

For our analysis on error rates, our data did not meet 
normality assumptions which was confirmed with a Shapiro-
Wilks normality test. Therefore, we utilized the Aligned Rank 
Transform analysis of variance test (ART-ANOVA) [28]. This is a 
non-parametric alternative to a repeated measures analysis of 
variance (RM-ANOVA) when normality assumptions are not met. 
We used the transformed data for analysis, however, the mean 
errors rates presented in this paper are the actual measured values. 

5.1.1 Mode Error Rate. In our analysis of mode error rates per 
number of modes, an ART-ANOVA found a significant main effect 
of number of modes on the mode error rates (F3,80 = 3.516, p < 0.05). 
We ran a post-hoc comparisons using a pairwise t-test and found 
that participants made significantly less errors (p < 0.05) in the 
two-mode condition when compared to both the four-mode and 
six-mode conditions.  

5.1.2 Crossing Error Rate. We also analyzed crossing error rates 
per number of modes. An ART-ANOVA found no significant main 
effect of number of modes on the crossing error rates (F3,80 = 1.42, 
n.s.). We do note that while there was no significant effect, the 
error rate decreased as the participants completed more blocks 
(i.e., as the number of modes increased). We attribute this decrease 
in error rate to participants getting used to the mechanics of 
dragging and releasing an object in 3D space over time. 

5.2 Time Analysis 
We model our trial time (𝑇𝑡𝑟𝑖𝑎𝑙) based on prior work [15]: 

𝑇𝑡𝑟𝑖𝑎𝑙 = (𝑇𝑝 + 𝑇𝑎) +  𝑇𝑔 + 𝑇𝑥 (1) 

where (𝑇𝑝  +  𝑇𝑎 ) is the planning and mode activation (PA) time 
(i.e., time from start of a trial to the final mode selection), 𝑇𝑔 is the 
grab time (i.e., time from final mode selection to the object grab 
event), and 𝑇𝑥  is the crossing time (i.e., time from object grab 
event to object release event). We collected all the raw times from 

our user studies, excluding trials with mode and crossing errors, 
then calculated the respective means by averaging the times for 
each participant over each of the conditions (two-, four-, six-, and 
eight-mode). Means and standard deviations of our time analysis 
can be found in Table 3. For our time analysis, we utilized a RM-
ANOVA and checked normality with a Shapiro-Wilks normality 
test. When the times were not normal, we applied either a log 
transform or an inverse transform to the data. We utilized the 
transformed data for analysis, however, the mean times presented 
in this paper are the actual measured values. When the RM-
ANOVA found significant effects, a Tukey post-hoc test was 
performed and reported significant of p < 0.5. 

5.2.1 Trial Time Analysis. We first wanted to get an overview 
of how the number of modes affected trial time (𝑇𝑡𝑟𝑖𝑎𝑙 ) before 
digging deeper into what components of the task impacted task 
performance. A RM-ANOVA found a significant main effect of 
number of modes on the trial time (F3,81 = 3.34, p < 0.05). A Tukey 
post-hoc comparison test found that participants were 
significantly faster in the two-mode condition (M = 3.66 seconds 
(s), SD = 2.01) than the four-mode condition (M = 4.04s, SD = 2.17). 
No other significance was found among the remaining 
comparisons. However, we do note that participants completed 
the six-mode (M = 3.86s, SD = 1.86) and eight-mode conditions (M 
= 3.69s, SD = 1.69) quicker than the four-mode.  

5.2.1.1 Planning and Activation Time Analysis. We analyzed 
planning and activation (PA) time (𝑇𝑝  +  𝑇𝑎) with a RM-ANOVA 
and found a significant main effect of the number of modes on the 
PA time (F3,81 = 61.62, p < 0.001). When plotting the data, we saw 
a significant increase in the PA time when jumping from the two-
mode condition to the four-mode condition. A Tukey post-hoc 
comparison test found that participants were significantly faster 
in the two-mode condition (M = 0.96s, SD = 1.23) than the 
remaining conditions: four-mode (M = 1.78s, SD = 1.63), six-mode 
(M = 1.71s, SD = 1.37), and eight-mode (M = 1.71s, SD = 1.28).  

5.2.1.2 Grab Initiation and Crossing Time Analysis. We also 
examined the time it took participants to grab the object after 
making their final mode selection (𝑇𝑔). Using a RM-ANOVA we 
found a significant main effect of the number of modes on grab 
initiation time (F3,81 = 7.25, p < 0.001). A Tukey post-hoc 
comparison test showed that the grab initiation time for 
participants was significantly slower in the two-mode condition 
(M = 1.09s, SD = 0.76) when compared to the other conditions: 
four-mode (M = 0.93s, SD = 0.56), six-mode (M = 0.93s, SD = 0.55), 
and eight-mode (M = 0.86s, SD = 0.48). Participants tended to 
improve grab initiation time as the study progressed.  

We saw the same trend of improving performance for 
crossing time (𝑇𝑥). A RM-ANOVA found a significant main effect 
of the number of modes on crossing time (F3,81 = 20.08, p < 0.001).  
A Tukey post-hoc comparison test showed that participants were 
significantly slower in the two-mode condition (M = 1.57s, SD = 
0.92) compared to the other conditions: four-mode (M = 1.34s, SD 
= 0.83), six-mode (M = 1.24s, SD = 0.66), and eight-mode (M = 1.12s, 
SD = 0.62). Participants were also significantly slower in the four-
mode condition when compared to eight-mode. 

Mode 
Condition 

Mode Error Crossing Error 

Mean SD Mean SD 

two- 2.46 3.16 6.18 6.48 

four- 3.86 2.63 4.63 3.76 

six- 4.09 3.47 4.46 4.93 

eight- 3.79 2.78 3.27 3.9 

Table 2. Means and standard deviations of the percent 
of mode and crossing errors per mode condition (%).  
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5.2.2 Analysis of Other Factors. We also analyzed time in terms 
of the color of the object, shape of the object, unweighted-mode 
vs weighted-mode blocks (i.e., first vs second experimental block), 
and gesture type. We only examined PA time (𝑇𝑝  +  𝑇𝑎) since it 
involves the number of modes. We did not find any significant 
effects for three of these factors when running a RM-ANOVA for 
main effects on PA time: color of object (F3,81 = 0.82, n.s.), shape of 
object (F1,27 = 1.88, n.s.), and unweighted-mode vs weighted-mode 
blocks (F1,27 = 1.48, n.s.). The color and shape of an object did not 
have any effect on the study results. Our findings strengthen the 
notion that participants focused on the mode change instead of 
memorizing the frequency in which a mode would appear.  

We did find a significant main effect of gesture type (1-palm, 
1-back, 2-palm, 2-back, 3-palm, 3-back, 4-palm, and 4-back) on PA 
time when running a RM-ANOVA (F7,186 = 10.40, p < 0.001). A 
Tukey post-hoc comparison test showed that there were 
significant differences among the counting gestures, namely that 
both the 1- and 4-gestures (M = 1.38s, SD = 0.68 and M = 1.40s, SD 
= 1.05 respectively) were significantly faster than the 2- and 3-
gestures (M = 2.08s, SD = 1.01 and M = 2.21s, SD = 1.37 respectively, 
p < .05 in all cases). There were no significant differences found 
for hand orientation among the counting gestures (i.e., palm vs 
back); see Figure 3. We must note that this analysis was only run 
on data from the unweighted eight-mode block when all gestures 
were used an equal amount of times. 

5.3 Exploratory Model Fit Analysis 
In Hick’s [3] original study, he found that modeling response time 
(RT) based on number of equally probable choices follows a 
logarithmic function. This function expressed linearly is: 

𝑅𝑇 =  𝑎 +  𝑏 ∗ 𝑙𝑜𝑔2(𝑛) (2) 

where a and b are constants, and n is the number of equal choices. 
Recall our model of trial time (Ttrial) from Equation 1. Similar to 
Ruiz et al. [15], we substituted response time (RT) with the mode 
planning and activation (PA) time (𝑇𝑝  +  𝑇𝑎 ), resulting in the 
following equation: 

𝑇𝑝  +  𝑇𝑎 =  𝑎 +  𝑏 ∗ 𝑙𝑜𝑔2(𝑛) (3) 

where a and b are empirically determined constants, and n is the 
number of modes. In our analysis, a Pearson’s Product-Moment 
Correlation found a moderate correlation between observed PA 
time ( 𝑇𝑝  +  𝑇𝑎 ) and the RT model (R2 = 0.84), however, the 
correlation was not significant (t2 = 2.20, n.s.). 

We also analyzed this model for weighted mode occurrences. 
In our weighted-mode blocks, we increased the ratio of new 
modes to old modes. This allowed us to analyze Hick’s [3] original 
logarithmic model with choice variation against his model with 
equally probable choices (Equation 2). Allowing variation in the 
probability of any one choice produces the following equation: 

𝑅𝑇 =  𝑎 +  𝑏 ∑ 𝑝𝑖 ∗  𝑙𝑜𝑔2 (
1

𝑝𝑖
)

𝑛

𝑖=1

(4) 

where pi is the probability of the ith choice, a and b are constants 
and n is the number of unequal choices. Again, we substitute RT 
with PA time ( 𝑇𝑝  +  𝑇𝑎 ) deriving the following equation for 
weighted modes: 

𝑇𝑝  +  𝑇𝑎 =  𝑎 +  𝑏 ∑ 𝑝𝑖 ∗  𝑙𝑜𝑔2 (
1

𝑝𝑖
)

𝑛

𝑖=1

(5) 

where pi is the proportion of how often the ith mode appears, a 
and b are empirically determined constants, and n is the number 
of modes. A Pearson’s Product-Moment Correlation found a 
moderate correlation between observed PA time (𝑇𝑝  +  𝑇𝑎) and 
the RT model (R2 = 0.82) with no significance in this correlation as 
well (t2 = 2.09, n.s.). This result aligns with our earlier finding of 
no significance between weighted- and unweighted-mode blocks.  

For both weighted- and unweighted-mode blocks, correlation 
values are lower than those previously reported [15]. This 
suggests that there may be other factors contributing to this fit as 

 

Figure 3. Average planning and activation time (Tp + Ta) 
per gesture type. Error bars represent the 95% 
confidence interval. 

Mode 
Condition 

Tp + Ta Tg Tx Ttrial 

Mean SD Mean SD Mean SD Mean SD 

two- 0.96 1.23 1.09 0.76 1.57 0.92 3.66 2.01 

four- 1.78 1.63 0.93 0.56 1.34 0.83 4.40 2.17 

six- 1.71 1.37 0.93 0.55 1.24 0.66 3.86 1.86 

eight- 1.71 1.28 0.86 0.48 1.12 0.62 3.69 1.69 

Table 3.  Means and standard deviations of planning and activation time (Tp + Ta), grab time (Tg), 
crossing time (Tx), and total trial time (Ttrial). Times are given in seconds.  
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shown by PA time (𝑇𝑝  +  𝑇𝑎 ) plateauing after our two-mode 
condition. Overall, our observed data does not support the model 
for both the weighted- and unweighted-mode occurrences.  

6 Discussion and Design Implications 
In this section, we discuss our findings and how they relate to 
refining non-preferred hand mode switching for AR. We first 
discuss possible learning effects in the experiment. Following this, 
we discuss how our data compares to the Hick-Hyman model and 
how our original assumptions may have been incorrect. We finish 
with insights into gesture production and the implications they 
have for future gesture-based mode switching techniques. 

6.1 Discussion of Learning Effects 
Recall that we saw improvements in grab initiation time and 
crossing time as the modes increased. Ideally, this would remain 
constant across conditions. These improvements showed that 
learning was a possible factor in our object manipulation task. Our 
experimental design was based on work by Ruiz et al. [15]. Thus, 
their same concerns with overloading participants with too many 
modes at the start applies to our study. 

We attribute the improvements in grab initiation time and 
crossing time to the chronological nature of the experiment design. 
Since participants saw each condition in order, two- then four- 
then six- then eight-mode, their mechanics of grabbing, dragging, 
and releasing an object improved. However, planning and 
activation (PA) times (more indicative of actual mode switching 
performance) showed no noticeable learning effect. 

6.2  Modeling Mode Switching Performance 
In Section 5.3 we analyzed how well our data fit the existing model 
for mode switching. Ruiz et al. [15] applied the Hick-Hyman Law 
[3, 5] for modeling non-preferred hand scalability of pen-based 

mode switching. However, we discovered that their model does 
not accurately reflect the decision making within our task design. 

We noticed differences in our data’s behavior compared to the 
Hick-Hyman model. In the Ruiz et al.’s [15] model, PA time 
increased logarithmically with the number of modes (a large 
increase early on, and then smaller increases following that). In 
our data, we saw a significant increase between the two- and four-
mode conditions, then times plateaued to around 1.7s (Figure 4) 
for the remaining mode conditions. The only temporal increase 
observed was moving from the two-mode to four-mode condition, 
which is still consistent with prior work [16]. So, we argue that 
the Hick-Hyman Law is still a good model for mode switching, but 
there are more complex behaviors present need to be considered. 

The original Hick-Hyman Law focused on the concept of 
decisions rather than number of possible options (e.g., modes); 
stating that a person’s reaction time is based on the number of 
decisions to make. The original study by Hick [3] modeled a series 
of binary decisions, shown in Figure 5 (left). This resulted in an 
average of log2(n) decisions needed, with n representing the 
number of possible combinations. In the previous study [16] and 
in our study, we believed mode selection followed the same 
behavior, with n equal to the number of modes. However, we now 
see that there are fewer decisions than originally thought. 

In our study, a person would need to choose from a max of 
two shapes and four colors. In the two-mode condition, there was 
only one decision to make, choosing between cube or sphere. By 
adding color in the four-mode condition, we increased the 
decisions to two: one for choosing the shape and one for choosing 
color. However, the number of decisions remained the same in the 
six- and eight-mode conditions. In those conditions, we only 
increased the number of color options available, rather than truly 
increasing the number of decisions, shown in Figure 5 (right).  

As a result, we cannot generalize mode switching time to 
simple logarithmic behavior. According to Hick-Hyman, time 
depends more on the number of decisions than just the number of 
combinations. The two are related, but we cannot assume all mode 
switching follows the Hick-Hyman decision tree. This has 
interesting implications for mode switching in AR and may 
generalize to other 3D interfaces, such as VR. Apart from the 
initial addition of color with shape, adding more colors did not 
significantly increase PA time. Our findings show that for non-
preferred hand mode switching in AR, adding another decision 
type is costly, but modes can be added with minimal cost. 

6.3 Gesture Type Considerations 
One interesting finding from our study was the effect of gesture 
type on PA time. Our results showed that the 1- and 4-counting 
gestures were significantly faster than the 2- and 3-counting 
gestures. The orientation of the hand did not make a difference. 
The performance of hand gestures is a relatively unexplored area. 
Prior work has focused on understanding the difficulty of 
articulating multi-touch gestures [14] and quantifying the 
performance of touch gesture production based on human 
kinematics [9]. However, this type of analysis has not been 
conducted for hand gestures. One study, by Erazo and Pino [1], 
looked at modeling the time it would take to execute a hand 

 

Figure 4. Hick-Hyman model against observed planning 
and activation time (Tp + Ta). Each gray point represents 
average times per participant, the black line represents 
the total average time across each condition, and the red 
line represents the model fit. 
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gesture based on the mechanics of the motion (e.g., swiping or 
retracting the arm). Their study did not investigate the 
performance and difficulty of articulating the wrist and fingers to 
make different hand gestures. 

Our findings make intuitive sense, as the 2- and 3-counting 
gestures are more complex. These gestures require moving the 
middle and ring fingers separately, which is difficult because they 
share a common flexor muscle [6]. Flipping the orientation of the 
hand, however, can be considered a simple motion, as the wrist 
only rotates about one axis. The fact that certain gestures resulted 
in worse performance has implications for gesture-controlled 
applications where temporal performance is critical. Different 
gesture attributes may affect the time it takes for a person to 
perform the gesture, such as finger movement constraints or other 
biomechanical considerations. Future work is needed to further 
understand how these attributes affect gesture production.  

7 Limitations and Future Work 
One limiting factor in our study involves the chronological 
introduction of modes (i.e., each participant experienced the two- 
then four- then six- then eight-mode conditions). As previously 
noted, this may have caused the improved performance for both 
grab time (𝑇𝑔) and crossing time (𝑇𝑥), introducing an unintended 
order effect. Future work can reproduce this study using a 
counterbalanced approach, however, the experiment needs to be 
carefully designed so that 1) participants are not overwhelmed by 
the introduction of a large amount of modes and 2) adequate 
training of the system and mode selection techniques does not 
independently bias performance from one condition to another.  

We found that adding the extra complexity of color when 
going from the two- to four-mode conditions dramatically 
increased PA time, while adding more colors did not (i.e., during 
four-, six-, and eight-mode conditions). Adding decision types can 
be costly, while modes can be added with minimal cost. Future 
work is needed to explore the cognitive cost of adding decision 
types when compared to modes for mode switching in AR.  

8 Conclusion 
We examined the scalability of non-preferred hand mode 
switching in AR with two, four, six, and eight modes. We found 
that as the modes increased, performance plateaued instead of 
following a logarithmic curve. The previous model focused 
directly on relating response time to the number of modes. 
However, based on the Hick-Hyman Law, we believe response 
time to be related to the number of decisions a user must make. 
This behavior is more complex and changes depending on the way 
modes and options are presented; increasing the types of decisions 
(e.g. adding color to shape) is more costly than increasing the 
number of modes (e.g. adding more color options) for non-
preferred hand mode switching in AR. We view our work as the 
starting point for understanding the costs associated with scaling 
interaction techniques in AR. 
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