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Abstract—People communicate through words and gestures,
but current voice-based computer interfaces such as Siri exploit
only words. This is a shame: human-computer interfaces would
be natural if they incorporated gestures as well as words. To
support this goal, we present a new dataset of naturally occurring
gestures made by people working collaboratively on blocks world
tasks. The dataset, called EGGNOG, contains over 8 hours of
RGB video, depth video, and Kinect v2 body position data of 40
subjects. The data has been semi-automatically segmented into
24,503 movements, each of which has been labeled according
to (1) its physical motion and (2) the intent of the participant.
We believe this dataset will stimulate research into natural and
gestural human-computer interfaces.

I. INTRODUCTION

Modern voice-based interfaces such as Siri [3], Alexa1,
and Cortana2 are popular because they make interacting with
technology natural and intuitive. They let us talk to our appli-
cations much as we would another person. At the same time,
users of these interfaces quickly learn that the communication
channel is limited. Voice-based interfaces interpret our words,
but not our gestures or expressions. If communicating with
computers is to become truly natural, interfaces will need to
recognize gestures and expressions as well as words.

This paper encourages the development of systems for
recognizing communicative gestures by presenting a new data
set of continuous, task-based conversations with RGB video,
depth video, and frame-by-frame body positions. The data set
also includes hand-generated ground truth gesture labels. As
discussed in the Related Work section below, this is by no
means the first gesture data set, and gesture recognition is
already an active field. Shared data sets, however, strongly in-
fluence research directions, and existing data sets do not target
the types of rapid and subtle gestures that occur spontaneously
between people.

More precisely, this paper introduces a gesture data set
collected while two people perform a shared, physical task.
The participants are in separate rooms, connected by video and
audio links. Both participants are standing in front of tables,
as shown in Figure 1. One participant (the actor) is given a
set of blocks; the other (the signaler) is given a picture of
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1https://developer.amazon.com/public/solutions/alexa/alexa-voice-
service/rest-overview

2https://en.wikipedia.org/wiki/Cortana (software)

blocks in a specific arrangement. The task is for the signaler
to get the actor to recreate the pattern of blocks. On some trials
there is no audio channel, so gestures and expressions are the
only modes of communication. Other trials include an audio
channel, so gestures supplement rather than replace spoken
words. The data set contains 360 trials with 40 participants,
for a total of eight hours of multi-modal recordings of gestures.
Section III describes the data and how it was collected in more
detail.

The data set, called EGGNOG3, captures aspects of com-
munication through gestures not featured in previous data sets.
Among the most important are:

1) Naturally Occurring Gestures. The participants were
given no instructions about gesturing. Consequently, the
gestures are those that occur naturally in the course of
communication. Although some gestures are idiosyn-
cratic, many gestures are used spontaneously by different
subjects. These gestures are rapid and sometimes subtle,
and different from the stylized gestures found in sign
languages or video games.

2) Continuous Data. Gestures occur in the context of
tasks that average around one minute (with sound) or
one and a half minutes (without sound) to complete.
The average gesture takes about one second, and of
course not all movements are meaningful gestures. In
fact, most motions have no discernable semantics. As a
result, gestures recognition requires detection as well as
classification.

3) High-Quality Multi-Modal Data. The advent of in-
expensive depth sensors has broadened the scope of
gesture recognition research. Gestures can be recognized
in RGB video data, depth video data, or in 3D body
position data (sometimes called skeleton data, and sim-
ilar to motion capture data). Systems like the Microsoft
Kinect [28] and Asus Xtion4 capture real-time body
position data, while sensors like the Intel RealSense5

or LeapMotion6 track hand position data. EGGNOG
includes registered video, depth and body position data
from a Microsoft Kinect v2 sensor. The Kinect v2 is
significantly more accurate than the original Kinect, and

3EGGNOG: Elicited Giant Gallery of Naturally Occurring Gestures
4https://www.asus.com/3D-Sensor/Xtion PRO/
5http://www.intel.com/content/www/us/en/architecture-and-

technology/realsense-overview.html
6https://en.wikipedia.org/wiki/Leap Motion978-1-5090-4023-0/17/$31.00 c©2017 IEEE



we believe this added accuracy is necessary to detect
naturally occurring gestures.

Unlike many other datasets, EGGNOG is not tied to a single
challenge problem. It provides over 8 hours of labeled data that
supports many lines of research. EGGNOG supports gesture
recognition research in RGB, depth, and/or body pose data,
but it also supports research in gestural semantics, dialogue
analysis and other related topics. It includes not only the
raw data but labels and support tools as well. Every video is
semi-automatically segmented, and the resulting segments are
labeled according to (1) the physical motions and poses of the
head, torso, arms and hands and (2) the intent of the signaler.
The tools used to segment and label videos are provided, as
are protocols and baseline results for one interpretation task
(hand pose and orientation recognition). More information on
the labeling scheme can be found in Section IV.

II. RELATED WORK

In a 2014 survey, Ruffieux et al. [25] listed 15 publicly
available gesture datasets. More recently, in a survey of
RGBD datasets, Firman [8] added 5 more gesture datasets,
and more recently still Ponce-López et al. [22] introduce the
ChaLearn 2016 dataset. Of these 21 datasets, 7 concentrate
exclusively on hands, with 4 showing hands against blank
backgrounds [14], [23], [24], [18] while 3 focus on hands
in more challenging settings [16], [5], [21]. 9 more datasets
reflect full body gestures from predefined task-specific lexi-
cons: 5 sign language lexicons [2], [6], [7], [13], [19], 2 video
game lexicons [9], [4] and 2 military gesture lexicons [17],
[27]. The ChaLearn 2013 dataset shows full body gestures
from multiple lexicons, including but not limited to diving
gestures and Italian social gestures [7]. The earlier ChaLearn
2011 [11] dataset is very large (about 50,000 gesture instances)
and combines 100 different hand and arm gestures from a
collection of lexicons.

Only two datasets allow participants to invent their own
gestures. In the 3DIG dataset [26], subjects were shown
20 3D objects and asked to create their own object-specific
gestures. The newer ChaLearn 2016 [22] is a behavior rather
than gesture dataset. It contains 3,000 YouTube videos of
people speaking to the camera, and the goal is to rate the
speakers according to five personality traits (extraversion,
agreeableness,conscientiousness, neuroticism and openness).
The avoids predefining a lexicon of actions, but it means the
videos are not labeled at the level of gestures, nor is their any
need to recognize or assign meanings to specific gestures.

Since most of the datasets listed above contain only positive
samples of gestures, Freeman et al. [10] provide a dataset of
naturally occuring non-gestures for training systems that must
distinguish between gestures and background motions.

With 21 gesture datasets available, why introduce another?
Because datasets support and encourage research in specific
tasks. Our goal is to stimulate research into gesture-based
human computer interaction. People communicate not only
through speech, but also through gestures. This is particularly
true when people work cooperatively on physical tasks. We

therefore present the EGGNOG dataset, which contains natural
gestures used by people working in blocks world. EGGNOG
is different from the datasets above in that it contains gestures
elicited from human subjects (see Section III below). These
gestures are often quite subtle and are qualitatively different
from sign language or video game gestures, for example.
Although the ChaLearn 2016 dataset records natural behavior,
there is no task, there is no two-way communication, and the
videos are not labeled at the level of gestures or actions. It is
intended to support personality analysis, not communication
through gestures.

EGGNOG is unique because it contains continuous data
of people while they work cooperatively. People move a lot
during these tasks. Sometimes they are meaningfully ges-
turing; other times they are just waving their arms while
they talk. Communication requires more than a forced choice
classification of pre-segmented samples or a general person-
ality analysis. Specific gestures have to be detected against a
background of other motions. Most of the datasets above only
contain pre-segmented gestures. Freeman et al. [10] provide a
data set of background motions as a way of enhancing training
data for non-forced-choice scenarios, but EGGNOG is the only
large, continuous gesture dataset. It should be noted, however,
that there are continuous datasets of human actions, as opposed
to gestures, for example [15].

Finally, with 24,503 labeled gesture instances, EGGNOG is
large enough to support research that exploits learning-based
techniques. This is not a unique feature – ChaLearn 2011 [11]
is even larger, for example – but it is an important feature
many other data sets lack.

III. DATASET RECORDING
A. Study Setup

To collect the EGGNOG dataset, we placed pairs of partic-
ipants in separate rooms, each in front of a table. TV screens
and Microsoft Kinect v2 sensors were set up facing each
participant. Participants could see (and sometimes hear) each
other as if they were at opposite ends of the table. We also
used the Kinects for recording the studies. One participant,
the signaler, had the task of directing the other participant,
the actor, to construct a structure of wooden blocks, given an
image showing the block layout. The signaler was not allowed
to show the pattern to the actor. The actor was given twelve
wooden blocks (4 inches on a side) to use in constructing the
block layout. Figure 1 depicts the setup, while Figure 2 shows
a snapshot of Kinect video of a signaler and actor. Since actors
mostly move blocks, we describe the data from the signalers
in this paper (although the actor data is also available).

For each session, we ran up to ten trials per participant
(sometimes less, depending on time constraints), after which
the participants would switch roles, and repeat for up to
another ten trials. Each trial used a different block layout, and
layouts were not repeated within sessions. Ten sessions were
completed where neither participant could speak (sound was
muted for the entire session), and another ten sessions were
completed where both verbal and non-verbal communication



Fig. 1: The setup used to record the dataset. The EGGNOG
data set focuses on data from the signalers (Subject A’s above).

Fig. 2: A snapshot from videos recorded simultaneously from
the signaler (left) and actor (right).

were allowed (i.e. participants could both see and hear each
other).

In each trial, we presented the signaler with a picture of a
block layout (mounted the the right of the signaler’s screen,
so the actor couldn’t see it). The signaler then began to
communicate with the actor and describe how to construct the
layout. The actor would place and move blocks on the table
until the layout was completed, at which point researchers
would signal to both participants that the trial was complete.
Each trial was recorded from when the layout was presented
to when the layout was successfully replicated. In order to
observe natural gestures that occur spontaneously, participants
were not allowed to speak to each other or discuss strategies
beforehand.

B. Participants

We recruited forty participants via email and visits to local
computer science classes. Thirteen participants were female.
Participant ages ranged from 19 to 64 (mean = 24.68, SD =
9.14). Only four participants were left-handed, and twenty-
one participants had prior experience with gesture interaction
systems such as the Microsoft Kinect or Nintendo Wii. Out
of the twenty sessions (one pair of participants per session),
ten pairs were acquainted. Participants each received a $10
Amazon gift card as compensation.

C. Data Collection

A total of 360 trials were recorded, with an average of
roughly 18 trials completed per session. 3 more trials were
discarded due to recording malfunctions. Collectively, the 360
trials contain 8:07:02 (h:mm:ss) of data. Trial lengths vary

Fig. 3: A snapshot from an RGB video (top), with the matching
frames from the depth image (bottom left) and skeleton data
(bottom right).

between 00:05.5 seconds and 13:36 (mm:ss), with an average
time of 1:20 (SD = 1:25). We record RGB, depth, and body
position data for all trials; sound is included when applicable.
The RGB videos are recorded at a resolution of 1, 920×1, 080
pixels at 30 fps. The depth videos are recorded at 512× 424
pixels, also at 30 fps. Figure 3 shows one frame from a video
with its corresponding depth image and skeleton pose data.

The skeleton data we provide includes 3D positions for all
25 joints tracked by the Microsoft Kinect v2. Note, however,
that the subjects are standing behind tables. Nothing below
the waist is visible, so joint positions corresponding to the
hips, legs and feet are unreliable and should be discarded as
in Figure 3, resulting in 17 meaningfully tracked joints.

IV. DATASET LABELING

A. Labeling Language

To determine ground truth, as well as to aid researchers
who may be interested in classification but not segmentation or
detection, EGGNOG trials are semi-automatically segmented
into motions. The segmentation algorithm divides videos at
curvature maxima of the curve traced out by the subject’s joint
positions over time, using the algorithm described in [1]. Once
a video is segmented, human annotators are given the option of
moving, inserting, or deleting segment boundaries. They then
label every segment twice: one label describes the physical
gesture in terms of moving body parts, while the other label
conveys the intent behind the gesture. This section presents
the description languages used for these labels, while the next
section provides label statistics over the dataset.



An important distinction between EGGNOG and other
datasets is that the set of gestures was not mandated before-
hand. Participants were asked to complete a task, and used
whatever gestures came naturally to them. Consequently, the
gesture labels and label format was created after the data was
collected, in order to describe the observed gestures.

1) Physical Gesture Labels: Gesture labels follow a general
format of body part: description, for example head: nod or
right hand: fist. Body part descriptions may be combined
into one label separated by semicolons, such as head: nod;
right hand: point, down. Each description contains one or
more terms describing aspects of the gesture, namely motion,
relation, and/or pose. Motions, relations and poses in turn have
orientations. In the description below, aspects are grouped with
square brackets (and are considered optional), with individual
terms in angle brackets:

<body part>:
[<motion>, <orientation>,]
[<relation>, <orientation>,]
[<pose>, <orientation>];

Each label begins with one of the following body parts:
1) Body: Used to describe large motions of the person’s

upper body, such as stepping forward or back.
2) Head: Used to describe head motions (e.g. shake).
3) Arms: Either arms (plural), LA (left arm) or RA (right

arm). Note that minor, unintentional arm motions are
ignored.

4) Hands: Either hands, LH (left hand), or RH (right hand).
Used to describe hand orientations, poses and motions.
The palm is denoted as the ’front’ of the hand, while
the other side is the back.

Since the participants are standing behind a table, only the
head, torso, and arms are visible. Legs and feet are therefore
omitted. Shoulder shrugs are the one observed gesture not
expressible in terms of the body parts above, and may be
added as a special label in the future.

Each body part description contains a motion, relation,
and/or pose. These are described as:

1) Motion: Terms for the complex motions of body parts.
Beckon, for example, is the motion of curling arms
and/or hands toward the body in a beckoning motion.
In the case of plural body parts (i.e. arms or hands), the
motion may be relative, as in together. The complete
set of motion terms is: apart, beckon, enough, move,
nod, pivot, rotate, rub, shake, still, stack, surround, tap
and together. Some terms apply to any body part (e.g.
shake), while others are limited to specific body parts
(only hands tap, for example).

2) Pose: Describes detailed hand positions. There are hand
poses for every number from one through five. In addi-
tion, there are other hand poses: claw, closed, fist, inch,
L, open, point, and thumbs. Figure 4 shows examples
of each of the non-numeric poses. Note that poses also
have orientations, for example to distinguish between
thumbs, up and thumbs, down.

Claw Closed Fist

Inch L Open

Point Thumbs

Fig. 4: Examples of non-numeric hand poses, extracted from
depth data (similar to the bottom left of Figure 3) using the
algorithm of Zhou et al. [29]. ”Claw” mimics the hand shape
needed to pick up a block. ”Closed” and ”Open” represent
shapes where the hand is flat; in ”Closed” the fingers are
together, while in ”Open” they are spread out. The numbers
one through five add five more hand poses, for a total of 13.

3) Relation: Describes relations between body parts. For
instance, people may put their hands together, forming
a contact relation. Relations may also describe hand
positions relative to each other, such as facing or op-
posed palms. The relation terms are: contact, crossed,
facing, gap, hold, interleaved, opposed, (hands) to face
and (hands) to hips.

Motions, poses and relations have optional orientations. We
use egocentric coordinates: up, down, left, right, front, and
back. For unsigned motions, for example the direction of a
gap, we use the first term in every pair: up, left or front. To
see how body parts, motions, poses and relations fit together,
Figure 5 shows the first and last frames from an instance of
right arm: move, up; right hand: into thumbs, up.

2) Intent Labels: The intent track records the inferred
intention of the participant, within the context of communi-
cating a block layout. Intents are a higher level description of
communication, and the goal was to make intent descriptions
as close as possible to English.

Multiple physical gestures often group into a single intent
label. For example, a person might move their arm to the left,
point to the left, and then move their arm back to their body.
These gestures are grouped and given a single intent label,



(a) Start of the gesture

(b) End of the gesture

Fig. 5: First and last frame of an instance of the Right
arm:move, up; right hand: thumbs, up gesture.

new block, because in the context of the experiment unused
blocks are on the left side of the table.

Annotators used combinations of 41 intent labels to describe
the data. Some are numbers (one through five), while some
indicate spatial positions (here, there) or relative objects (this,
these, that, those). Some labels are actions (new, slide, stack),
while others are objects (yourself, single blocks, gaps between
blocks, or rows, columns, stacks, layers or pyramids of blocks).
Others are directions (left, right, forward, backward, middle,
between, top, down, or diagonal). Still more pertain to the
state of the conversation (start, wait, done, ok, yes, no, stop).

Although the structure of intent labels is less rigid than the
structure of physical gesture labels, there are terms that modify
other terms:

1) Servo: Used in conjunction with an action to denote that
the action is to continue until a stop command is given.
For instance, one may repeat a beckoning gesture until
the other person moves the block to the correct position,
at which point one either stops gesturing or an explicit
stop gesture is given. This example would be labeled as
a servo slide back. Intents without this word are assumed
to be command/response.

2) Relative: Used when the direction and/or location is

Fig. 6: The labeling tool

relative to a previous reference point. Intents without this
word are in respect to the table (global). For example,
one may point to a spot on the table (setting a reference
point) and then point to a spot to the right of that. The
second gesture would then have an intent of here relative
right.

As our dataset has two types of videos (with sound and
without sound), we did not use sound when determining intent.
Instead, we describe the intent of the gesture alone. Gestures
whose intent is not clear are labeled unknown.

B. Video Labeling

1) Segmentation: The labeling process begins by automat-
ically segmenting videos into gesture instances. We use an
automatic segmentation algorithm that models body poses as
points in a 51 dimensional pose space (because there are 17
meaningful 3D joint positions). Motions are curves in this pose
space, and we segment the videos at local curvature maxima.
This segmentation is based on the work of Arn, et al. [1].

The automatic segmentation algorithm is not perfect, and
human inspection is still needed. In some cases, the start or
end of gestures are miss-timed, and in other cases, multiple
gestures are grouped into a single gesture. Using the tool
described below, human annotators split, merge, and otherwise
correct segments as needed.

2) Labeling Support: To assist with the labeling process,
we used a labeling tool called Easel. Easel (see Figure 6)
features a graphical user interface with a ”piano roll” notation
similar to that found in video editing software. When loading
a video for annotation, the tool segments the file into gesture
instances as described above. Annotators then assign physical
gesture and intent labels with the help of pull-down menus,
side-by-side video playback, and auto-completion.

3) Data Format: Annotations are stored in XML. We use
a hierarchical XML format consisting of Session, Track, and
Annotation elements, where a Session represents a video
and contains one or more Tracks, a Track is a stream of
Annotations over the length of the video and can be of either
type Gesture or Intent, and an Annotation is a label for a



specific gesture over a defined period of time. Each of these
elements contains meta-data such as names, descriptions, etc.
This hierarchy is depicted below:

<Session>
<Tracks>

<Track>
<Annotations>

<Annotation />
...

</Annotations>
</Track>
...

</Tracks>
</Session>

Each annotation contains the start time, duration, and labels
of a gesture instance. Start/end frames are also provided for
precise analysis. Time follows a hh:mm:ss format, with frac-
tional seconds to tick (100 ns) resolution. A sample annotation
is below:

<Annotation>
<Time>00:00:02.5342835</Time>
<Duration>00:00:01.1000034</Duration>
<StartFrame>69</StartFrame>
<EndFrame>99</EndFrame>
<Label>body: still;</Label>

</Annotation>

V. DATASET STATISTICS
All together, EGGNOG has 40 subjects performing 360

trials, which in turn are segmented into 24,503 individual
motions. As described above, physical gesture labels contain
(possibly multiple) body parts, poses, motions, relations and
directions. We observed 5,060 distinct labels, i.e. combinations
of parts, poses, motions, relations and directions. 330 of these
multi-part labels occur 6 or more times.

Breaking down gesture labels into components, we find that
body was the body part most commonly labeled in gestures,
appearing in 6,718 labels. This is misleading, however, be-
cause people tend to stand still while waiting for their partners
to complete an action. As a result, the label body: still appears
4,307 times, leaving only 2,411 gestures that include a moving
body. In comparison, right arm motions are labeled 4,482
times, joint motions of arms are labeled 4,318 times, and left
arm motions are labeled 2,484 times. The ratio of right to left
arm motions is probably because 36 of 40 participants were
right handed. Table I lists the most often labeled body parts
in order of the number of occurrences.

Table I shows that collectively right, left and combined
arm motions account for 11,284 segmented motions. This is
over half of all motions, if we ignore body: still. Some of
these motions are communicative gestures, but most simply
reflect the tendency of people to punctuate their speech with
arm motions (what psychologists call beats [20]). Hand poses
often determine whether an arm motion is meaningful. Table II
shows the frequencies of hand poses.

Subpart Occurrences
body 6718
RA (Right Arm) 4482
arms 4318
LA (Left Arm) 2484
head 2285
RH (Right Hand) 1206
hands 1019
LH (Left Hand) 523

TABLE I: Counts of gesture occurrences by body part

Pose:Orientation Occurrences
Claw:down 1398
Thumbs:up 855
Open:down 665
Point:front 664
Fist 470
Point:down 396
Closed:down 309
Closed:facing 248

TABLE II: Counts of most common hand poses, with direc-
tions where appropriate. (In our labeling scheme, Fists do not
have orientations.)

We provide multi-part labels because it is usually a combi-
nation of factors that determine the meaning of a gesture. The
right arm moving forward, for example, is more meaningful
if the right hand is in a pointing pose. Table III shows the
15 most common gestures. We have already discussed body:
still. Head: rotate is common because people look from the
table to the pattern and then back to the table quite often. It’s
a head motion, but not really a gesture. The same might be
said of moving the right arm or both arms down. Arguably,
the most commonly occurring communicative gesture is head:
nod, a sign of agreement. The next might be arms: apart, left.
This is where the subject moves their arms apart, generally as a
signal to increase the space between two objects. In general, as
we move down Table III, the gestures become less common
but more communicative. One of the challenges of gesture
recognition is to recognize meaningful gestures among all the
other motions.

Table IV shows the 10 most common gestures that involve
more than one body part. Without exception, these are com-

Gesture Occurrences
body: still 3137
head: rotate 749
RA: move, down 610
arms: move, down; 438
head: nod 407
LA: move, down 250
RA: move, right 223
arms: apart, left; 220
RA: move, up 216
arms: move, back 212
RA: move, left 176
RH: rotate 163
RA: move, front 152
body:move, front 151

TABLE III: Top 20 most often occurring gestures.



Gesture Occurrences
RA: move, up; RH: into thumbs, up 149
arms: move, up; hands: into thumbs, up 113
RA: move, front; RH: into point, front 91
RA: move, up; RH: into point, front 86
arms: move, down; hands: into claw, down 80
RA: move, down; RH: into claw, down 57
RA: move, up; RH: into claw, down 54
LA: move, up; LH: to face 51
RA: move, up; RH: to face 50

TABLE IV: Top 10 most often occurring gestures with more
than one body part.

Intent Occurrences
Wait 3431
Think 2033
Talk 1871
Here 1129
Yes 668
Here relative 507
These 354
No 326
Done 323
This 301
Rotate 299
There 287
Stack 266
Slide Left 250
That 248

TABLE V: Top 15 most often occurring intent labels.

binations of arm motions and hand poses, and almost all are
meaningful gestures. In general, motions with multiple body
parts are usually, although not always, important.

Finally, Table V shows the most common intent labels
assigned to segments. It is clear that participants spent a lot
of time not doing much: the top three labels are wait, think,
and talk. The next most common category are deictic labels:
here, here relative, these, this, there, and that all appear in the
top 15 labels. Then come the social cues: yes, no, and done
(wait and think are also social cues). Action verbs are less
common. Only rotate, stack and slide left make the list, all
near the bottom. Numbers and directions do not crack the top
15, although they do show up farther down the list.

VI. BASELINE: HAND POSE RECOGNITION

EGGNOG supports many lines of research, and we antici-
pate that researchers will extract many different data subsets
for various recognition tasks. The EGGNOG web site will host
these subsets when requested to. As an example, we begin
by providing protocols and baseline results for the task of
recognizing hand poses and orientations from depth data.

Hand label recognition in EGGNOG is challenging for two
reasons. First, hand labels cannot be recognized in the body
position data. The skeletons provided by the Kinect v2 contain
3D positions for only the palm and the tips of the index
finger and thumb. None of the other fingers are represented,
and the positions of the thumb and index finger are highly
noisy. Second, as described in Section IV-A1, hand labels are
complex, having both poses and orientations. For example,

Fold Normalized total
Accuracy Accuracy

1 0.93 0.88
2 0.82 0.83
3 0.84 0.82
4 0.84 0.80
5 0.82 0.78
Avg 0.85 0.82

TABLE VI: Accuracy of ResNet-style [12] DCNN predicting
hand poses and orientations from depth images. Since the
number of samples per class is uneven, we report both the
average class accuracy and the total accuracy for each fold,
and the averages across all five folds.

the hand pose for the number two can be made with either
the palm or the back of the hand facing the camera. We
have identified 25 different pose/orientation pairs that appear
commonly in EGGNOG.

As a protocol for testing hand label recognition, we have
extracted 28, 506 samples of right hands across all 40 subjects,
unevenly distributed across the 25 pose/orientation categories.
The smallest category has 149 samples; the largest has 4, 947.
The samples were identified based on EGGNOG’s labels, and
for each sample a 128 × 128 depth image was extracted,
centered on the position of the right palm in the body position
data. The task is to identify the orientation and pose of a
hand, given the depth image. The samples are divided into
5 folds of 8 subjects each, such that no subject appears in
more than one fold, to support cross-validation testing. Since
some pose/orientations pairs are less common than others, the
training set is augmented by creating artificial samples that
are minor translations and rotations of the originals. These
augmented samples are used to provide at least 4, 000 training
samples per class, but the augmented samples are not used
during testing. The original hand samples, augmented samples,
and folds are all provided on the EGGNOG web site.

Our baseline algorithm for this task is a ResNet-style [12]
Deep Convolutional Neural Network with 50 layers. A total
of 5 nets were trained, with each net being trained on 4 data
folds and tested on the fifth. The accuracy of the resulting
nets is shown in Table VI, along with the average accuracies.
Since the number of samples per class varies, we report both
the average class accuracy and the average sample accuracy.

VII. CONCLUSION

People communicate through words and gestures. This
paper presents a new data set (called EGGNOG) of naturally
occurring gestures made by people working collaboratively on
blocks world tasks. It contains over 8 hours of RGB video,
depth video and Kinect v2 body position data of 40 subjects,
and has been segmented into 24,503 distinct movements. Each
movement has been labeled according to (1) its physical
motion and (2) the intent of the signaler.

The goal of this data set is to support research into recogniz-
ing the types of gestures that occur during human communica-
tion. The data set, including video, depth, and body pose data,



is publicly available at https://cwc.cs.colostate.edu/datasets,
along with the corresponding segment boundaries and ground
truth labels. The same web site will also maintain a list of
results from papers using the data set. The segmentation and
labeling tool is the subject of another paper (in preparation),
but that too will be made available as soon its paper is
published.

We are not proposing specific experimental protocols be-
cause this data can be used for so many purposes. We are
currently studying the differences in the types of gestures
people use with and without sound. This data can also be
used, however, for studies in hand pose recognition, motion
recognition, expression recognition, or combinations thereof. It
can be used to study variations within or across subjects. Most
importantly, it can be used for evaluating naturally occurring
gesture recognition systems.
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