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Abstract—Advances in artificial intelligence are fundamentally
changing how we relate to machines. We used to treat computers
as tools, but now we expect them to be agents, and increasingly
our instinct is to treat them like peers. This paper is an
exploration of peer-to-peer communication between people and
machines. Two ideas are central to the approach explored here:
shared perception, in which people work together in a shared
environment, and much of the information that passes between
them is contextual and derived from perception; and visually
grounded reasoning, in which actions are considered feasible if
they can be visualized and/or simulated in 3D.

We explore shared perception and visually grounded reason-
ing in the context of blocks world, which serves as a surrogate
for cooperative tasks where the partners share a workspace. We
begin with elicitation studies observing pairs of people working
together in blocks world and noting the gestures they use. These
gestures are grouped into three categories: social, deictic, and
iconic gestures. We then build a prototype system in which
people are paired with avatars in a simulated blocks world. We
find that when participants can see but not hear each other, all
three gesture types are necessary, but that when the participants
can speak to each other the social and deictic gestures remain
important while the iconic gestures become less so. We also find
that ambiguities flip the conversational lead, in that the partner
previously receiving information takes the lead in order to resolve
the ambiguity.

Keywords—Gesture Recognition, Human Computer Interfaces,
Artificial Intelligence

I. INTRODUCTION

Advances in artificial intelligence are fundamentally chang-
ing how we relate to machines. We used to treat computers as
tools, but now we expect them to be agents, and increasingly
our instinct is to treat them like peers [1]. For example, we
talk to them and give them personal names (e.g. Alexa, Siri,
Cortana). Unfortunately, the more familiar we become with
artificial agents, the more frustrated we become with their
limitations. We expect them to see and hear and reason like
people. No, no, Alexa, can’t you see that I ...

This paper is an exploration of ideas in peer-to-peer com-
munication between people and machines. It considers what
capabilities a machine might need, and presents a prototype
system with a limited form of peer-to-peer communication.
Two ideas are central to the approach explored here. The first
is shared perception. When people work together, much of
the information that passes between them is contextual and
derived from perception. Imagine, for example, two people
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Fig. 1. Prototype peer-to-peer interface. The signaler on the left can commu-
nicate through gestures and words. The avatar on the right can communicate
through gestures, words and actions.

cleaning a room. They might discuss high-level strategy (“you
start here, I'll start over there”), but they don’t describe every
action they take to each other. They can just look at the room
to see what the other person has or has not done. Only the
high-level discussion is verbal, and even that is grounded in
perception: the definitions of “here” and “over there” depend
on knowing where the other person is. In general, when one
person changes the state of the world, the other person can
see it, and the goal of conversation is to provide additional
information beyond what is provided by perception.

The second idea is that reasoning about physical objects
is grounded in visualization. Imagine a simple command like
“put the book on the table”. Is this command feasible? Yes,
if there exists both a book and a table, and there is a clear
spot on the table at least the size of the book, and if there
is a clear path from the book’s position to the table. Most of
the information needed to evaluate this command comes from
perception, and in general the command can be understood if
it can be visually simulated.

We explore these ideas in blocks world. In particular, we
consider a scenario in which one person (the builder) has a
table with blocks on it, and another person (the signaler) is
given a target pattern of blocks. Only the builder can move
the blocks, so the signaler has to tell the builder what to do.
While blocks world is obviously not a real-world application,
it serves as a surrogate for any cooperative task with a shared
workspace.

We begin our exploration with elicitation studies similar
to Wobbrock et al. [2], but with differences in how gestures
are elicited. In the original elicitation study format, people are
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given specific actions (called referents), and asked to create a
user-defined gesture (called signs) for the action. In our study,
we take a more natural approach and simply present a pair
of people with a task to complete and observe the actions
and gestures that naturally occur. In our elicitation studies,
the signaler and builder are both people. They are in separate
rooms, connected by a video link. We vary the communication
between them across three conditions: (1) the signaler and
builder can both see and hear each other; (2) the signaler and
builder can see but not hear each other; and (3) the signaler
and builder can only hear each other (the signaler can see the
builder’s table and knows where the blocks are, but cannot see
the builder).

Using gestures observed in the elicitation studies, we de-
velop a prototype system in which the signaler is a person but
the builder is an avatar with a virtual table and virtual blocks.
The signaler can see a graphical projection of the virtual world,
and communicate to the avatar through speech and gesture. The
avatar communicates back through speech, gesture, and action,
where an action is to move a block. Figure 1 shows the set
up, with the signaler on the left and the avatar on the right in
her virtual world.

Experience derived from using the prototype reveals impor-
tant features of human-computer cooperation on shared physi-
cal tasks. For example, we learned that complex, gesture-based
peer-to-peer conversations can be constructed from relatively
few gestures, as long as the gesture set includes: (1) social
gestures, for example acknowledgement and disagreement; (2)
deictic gestures, such as pointing; and (3) iconic gestures
mimicking specific actions, such as pushing or picking up
a block. When the builder and avatar are allowed to speak,
words can replace the iconic gestures, but the social and deictic
gestures remain important. We learned that ambiguities arise
in the context of conversations not just from questions of
reference, i.e. which block to pick up, but also from options
among actions, for example whether to put a block down on
top of another block or next to it. Fortunately, these ambiguities
are easily resolved if the conversational lead is allowed to
switch from the signaler to the builder (in this case, the avatar).
We also came to appreciate the importance of making two or
more gestures at the same time, for example nodding (a social
gesture) while signaling for the builder to pick up an object.
Finally, we learned how important it was for the avatar to
gesture back to the signaler, even when the avatar can speak
and move blocks.

From an engineering perspective, we also confirmed that
the combination of depth images from inexpensive sensors
(Microsoft Kinect v2s) and deep convolutional neural networks
is sufficient to recognize 35 common hand poses, and that
with GPUs these hand poses can be recognized in real time.
The directions of arm movements are also easily detected
and are needed for deixis and for supplying directions to
representational actions such as push or carry.

II. RELATED WORK

This paper explores multi-modal peer-to-peer communica-
tion between people and avatars in shared perceptual domains.
As such, it touches on multiple topics that have been stud-
ied before, including human/avatar interaction, multi-modal
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interfaces, and simulation semantics for reasoning, although
we know of no previous system that integrates all of these
components.

We have long known that people respond differently to
avatars than to non-embodied interfaces. Users generally have
a more positive attitude toward avatars, and often try to make
themselves appear better to the avatar. They also tend to assign
personality to avatars [3]. Although usually good, this can
backfire: if the avatar is unable to meet a user’s goals, the
user is more likely to get angry [4]. People respond better
to avatars and virtual robots than to non-embodied interfaces,
but they respond better still to physically present robots [5].
Although the work here focuses on human/avatar interactions,
it should extend interactions between humans and humnoid
robots as well.

Multimodal interfaces combining language and gesture
have been around since at least 1980, when Bolt introduced
“Put-that-there” [6]. Bolt’s work anticipated the use of deixis to
disambiguate references. More importantly, it inspired a com-
munity of researchers to work on multimodal communication,
as surveyed in [7] and [8].

Roughly speaking, there are two major motivations for
multimodal interfaces. The psychological motivation, as epit-
omized by Quek et al. [9], holds that speech and gesture are
coexpressive, and therefore compliment each other. People are
able to process speech and gesture partially independently,
so using both modalities to express information increases
human working memory and decreases the cognitive load [7].
People therefore retain more information and learn faster when
communicating multimodally.

Visual information has been shown to be particularly useful
in establishing common ground [10], [11], [12], which is
important in shared perception scenarios. Other research em-
phasizes the importance of video and shared visual workspaces
in computer-mediated communication [13], [14], [15], [16],
and highlights the usefulness of non-verbal communication
to support coordination between humans. Thus, multimodal
interfaces that leverage these human factors have the potential
to be a more effective collaborators.

This second motivation for multimodal interfaces is prac-
tical, as epitomized by Reeves et al. [17]. They argue that
multimodal interfaces increase the range of users and contexts.
For example, a device that can be accessed by either voice
or gesture command can be used both in the dark and in
noisy environments. They also argue that multimodal interfaces
improve security and privacy since, depending on the situation,
voice commands might be overheard or gestures might be
observed. In addition, Veinott et al. draw the implication
that the inclusion of video (and gestural information) may
be increasingly useful for communication in the presence of
language barriers [18].

This paper concentrates on shared physical tasks. When
people work together, their conversation consists of more than
just words. They gesture and share a common workspace [19],
[20], [21]. Their shared perception of this workspace supports
simulation semantics, and it is this shared space that gives
many gestures such as pointing their meaning [22].

If two beings communicate to complete a shared task,
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they can be considered agents, who are not only co-situated
and co-perceiving but also act, together or individually, in
response to communication. To coordinate action there must be
agreement of a common goal between the agents, which can
be called co-intent. Together, co-situatedness, co-perception,
and co-intent are the first aspects of common ground. There is
a rich and diverse literature on grounded communication [10],
[23], [24], [25], [26]. However, in joint tasks, agents share an
additional anchoring strategy—the ability to co-attend. This
ability emerges as central to determining the denotations of
participants in shared events. Experienced events differ from
events as expressed in language, as language allow us to
package, quantify, measure, and order our experiences, creating
rich conceptual reifications and semantic differentiations. The
surface realization of this ability is mostly manifest through
linguistic utterances, but is also witnessed in gestures.

Simulation can play a crucial role in human computer
communication by creating a shared epistemic model of the
environment. Simulation also creates an environment where
two parties may be co-situated and co-attend by giving the
agent an explicit embodiment [27], and allows the agent to
publicly demonstrate its knowledge, providing an additional
modality to communicate shared understanding within object
and situation-based tasks, such as those investigated by [28]
[29] and [30].

The simulation environment provided includes the per-
ceptual domain of objects, properties, and events. In addi-
tion, propositional content in the model is accessible to the
discourse, allowing them to be grounded in event logic (a
la [31]), and to be distinguished by the agents to act and
communicate appropriately. This provides the non-linguistic
visual and action modalities, which are augmented by the
inherently non-linguistic gestural modality enacted within the
visual context.

III. CASE STUDY: COMMUNICATING WITH GESTURE,
LANGUAGE AND ACTION

To explore the role of gesture in peer-to-peer communica-
tion with shared perception, we first conducted human subject
studies. The goal of these studies is to elicit common gestures
and their semantic intents for the blocks world task in order
to gain insight about how they might be used by people.
We then built a prototype human/avatar system to explore
communicating with computers.

A. Elicitation Studies

We begin with the human subject study design depicted
in Figure 2. As mentioned before, our goal is to elicit a set
of gestures and possible actions in blocks world by observing
people as they naturally communicate and collaborate with
each other to complete a task. Each trial has two subjects, a
signaler and a builder. Both subjects stand at the base of a table
with a monitor on the other end. A two-way video feed is set
up to allow both people to interact as if they were at opposite
ends of a long table. The builder is given a set of wooden
blocks, while the signaler is given a block layout/pattern. The
task is for the signaler to tell the builder how to recreate the
pattern of blocks without showing the pattern to the builder.
The use of a computer-mediated setup allows us to control the
communication allowed based on condition.
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Fig. 2. Human subject study designed to elicit gestures for the blocks world
domain and provide insight about how those gestures are used.

TABLE 1. TIME TO COMPLETION (MIN:SEC) FOR SIGNALER/BUILDER
BLOCKS WORLD TASKS UNDER THREE CONDITIONS: AUDIO+VIDEO,
VIDEO ONLY, AND AUDIO ONLY.

condition trials min median mean max

video+audio 188 0:26.2 0:48.1 1:06.0 6:07.1
video only 181 0:31.7 1:03.6 1:32.9 8:27.4
audio only 170 0:09.8 1:06.3 1:35.2 13:36.1

A total of 439 trials across 60 participants were conducted
under the following three conditions:

e Audio + Video: Participants can both see and hear
each other through the monitors.

e  Video-only: Participants can see but not hear each
other, requiring the use of non-verbal communication
only.

e  Audio-only: Participants can only hear each other (the
shared workspace is maintained: the signaler can still
see the builder’s table and know where the blocks are,
but only cannot see the builder).

In all three conditions, RGB-D video is captured of both the
signaler and builder using a Microsoft Kinect v2; the Kinect
also estimates the 3D coordinates of 17 visible body joints'
each frame.

The data set collected and some initial observations have
been described elsewhere [?]. Not previously reported, how-
ever, are the results below including the overall impact of the
visual gestures. As shown in Table I, participants were able to
finish the task in 1:06 (min:sec) on average in the audio+video
condition. In the audio-only condition, however, where the
signaler was only able to talk to the builder, the average
time increased to 1:32.9. This is very similar to the average
time to completion for the video-only case, which was 1:35.2.
This suggests that gestures are almost as communicative in
blocks world as words, and more importantly that words and
gestures are not redundant. Their combination is better than
either words or gestures alone, in alignment with [9], [18].

Overall, we collected about 12.5 hours of data. The au-
dio+video and video-only trials were hand labeled at the level
of left and right hand poses, left and right arm motions, and
head motions. Summarizing these labels, we discovered 110
combinations of poses and motions that occurred at least 20

IThe Kinect v2 estimates the positions of 25 joints, but the 8 lower-body
joints are consistently obscured by the table.
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TABLE II SEMANTIC GESTURES PERFORMED AT LEAST 20 TIMES IN
TOTAL BY AT LEAST 4 DIFFERENT HUMAN SUBJECTS.
Numeral | Representational Deictic Social
one grab point (that/there) start
two carry tap (this/here) done
three push this group positive ack
four push (servo) column negative ack
five push together row wait for
rotate wait (pause)
emphasis

times and were performed by at least 4 different subjects. Of
these, 29 were determined to have no semantic intent, as when
a subject drops their arms to their side. Of the 81 remaining
gestures, many were either minor variations or enantiomorphs
of each other. For example, a participant might make the
“thumbs up” sign while raising their forearm or pushing it
forward. Similarly, the “thumbs up” sign might be made
with the right hand, the left hand, or both. We also grouped
physically different but semantically similar poses, such as the
“thumbs up” and “OK” signs. After grouping similar motions
and poses, we were left with 22 unique semantic gestures, as
shown in Table II.

The 22 semantic gestures fall into four categories. Deictic
gestures, such as pointing or tapping the table, serve to denote
objects or locations. Iconic gestures, such as grab, push or
carry, mimic actions. Social gestures, such as head nods or
thumbs up, address the state of the dialog. Numerals are a
form of abstract plural reference. We note that there are broader
and more inclusive schemes for categorizing gestures (see [32],
chapter 6), but none are universally accepted and the simple
categories above work well for describing the gestures we
observed in blocks world.

B. Blocks World Prototype

The elicitation studies provide insights about gestures peo-
ple use in blocks world. Our goal, however, is to explore
peer-to-peer communication between people and computers
using visually-grounded reasoning in the context of shared
perception. To this end, we created a prototype system that
replicates the experimental set-up in Figure 2, except that
the builder is now an avatar and the blocks and table are
virtual. The system operates in real time, and allows the human
signaler to gesture and speak to the avatar. The avatar can
gesture and speak in return, as well as move blocks in the
virtual world. In some tests we turn off the audio channel,
thereby eliminating words and limiting communication to
gestures and observation.

This system gives us a laboratory for exploring peer-to-
peer communication between people and computers. Using it,
we have spent hours building and tearing down simple blocks
world structures, and the lessons learned from this experience
are summarized in the next section. The rest of this section
describes the human/avatar blocks world (HAB) system itself.

HAB has many components. For the purposes of this
paper, however, we concentrate on the perceptual module
that implements gesture recognition, the grounded semantics
module (VoxSim) which determines the avatar’s behavior, and
the interplay between perception and reasoning. The perceptual
module is described in subsection III-B1, VoxSim is described
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in subsection III-B2, and the interactions between perception
and VoxSim are described in subsection III-B3.

1) Perception: We hypothesize that shared perception is the
basis for peer-to-peer communication, particularly when work-
ing in a common workspace. To implement shared perception,
the human signaler and avatar builder need to be able to see
each other as well as the virtual table and its blocks. Perceiving
the virtual table and blocks is relatively easy. The avatar has
direct access to the virtual world, and can directly query the
positions of the blocks relative to the table. The human builder
sees the rendering of the virtual world, and therefore knows
where the blocks are as well.

More challenging is the requirement for the human and
avatar to see each other and interpret each other’s gestures.
Based on our elicitation studies, we have a lexicon of com-
monly occurring gestures. We animate the avatar so that she
can perform all of these gestures, and rely on the builder’s
eyes to recognize them. We also have an RGB-D video stream
of the human captured by the Microsoft Kinect v2. The rest
of this section describes the real-time vision system used to
recognize the builder’s gestures in real time.

Gesture recognition is implemented by independently la-
beling five body parts. The left and right hands are labeled
according to their pose. The system is trained to recognize
34 distinct hand gestures in depth images, plus a 35th label
(“other”) that is used for hands at rest or in unknown poses.
The hand poses are directional, in the sense that pointing down
is considered a different pose than pointing to the right. Head
motions are classified as either nod, shake or other based
on a time window of depth difference images. Finally, the
left and right arms are labeled according to their direction of
motion, based on the pose estimates generated by the Microsoft
Kinect [33].

To recognize gestures in real time, the computation is
spread across 6 processors, as shown in Figure 3. The pro-
cessor shown on the left is the host for the Microsoft Kinect,
whose sensor is mounted on top of the signaler’s monitor. It
uses the Kinect’s pose data to locate and segment the signaler’s
hands and head, producing three streams of depth images. The
pose data also becomes a data stream that is used to label
arm directions. The hand and head streams are classified by a
ResNet-style deep convolutional neural network (DCNN) [34].
Each net is hosted on its own processor, with its own NVIDIA
Titan X GPU. The arm labeling process has its own (non-GPU)
processor. Finally, a sixth processor collects the hand, arm and
head labels and fuses them using finite state machines to detect
gestures.

2) VoxSim: The avatar’s reasoning system is built on
the VoxSim platform [22], [35]. VoxSim is an open-source,
semantically-informed 3D visual event simulator implemented
in Unity [36] that leverages Unity’s graphics processing, Ul,
and physics subsystems.

VoxSim maps natural language event semantics through a
dynamic interval temporal logic (DITL) [37] and the visual-
ization modeling language VoxML [38]. VoxML describes and
encodes qualitative and geometrical knowledge about objects
and events that is presupposed in linguistic utterances but not
made explicit in a visual modality. This includes information
about symmetry or concavity in an object’s physical structure,
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Fig. 3. The architecture of the real-time gesture recognition module.

the relations entailed by the occurrence of an event in a
narrative, the qualitative relations described by a positional
adjunct, or behaviors afforded by an object’s habitat [39], [40]
associated with the situational context that enables or disables
certain actions that may be undertaken using the object. Such
information is a natural extension of the lexical semantic typ-
ing provided within Generative Lexicon Theory [41], towards a
semantics of embodiment. This allows our avatar to determine
which regions, objects, or parts of objects may be indicated
by deictic gestures, and the natural language interface allows
for explicit disambiguation in human-understandable terms.
The movement of objects and the movement of agents are
compositional in the VoxML framework, allowing VoxSim to
easily separate them in the virtual world, which means that the
gesture used to refer to an action (or program) can be directly
mapped to the action itself, establishing a shared context in
which disambiguation can be grounded from the perspective
of both the human and the computer program.

3) Perception & VoxSim: To create a single, integrated
system we connect the recognition module (and by extension,
the human signaler) with VoxSim and its simulated world.
VoxSim receives “words” from the gesture recognizer over
a socket connection, and interprets them at a contextually-
wrapped compositional semantic level. The words may be
either spoken or gestured by the (human) builder. For the
moment, we have seven multi-modal “words”:

1)  Engage. Begins when the signaler steps up to the
table or says “hello”, and ends when they step back or
say “goodbye”. Indicates that the signaler is engaged
with the avatar.

2)  Positive acknowledge. Indicated by the word “yes”,
a head nod, or a thumbs up pose with either or both
hands. Used to signal agreement with a choice by the
avatar or affirmative response to a question.

3)  Negative acknowledge. Indicated by the word “no”,
a head shake, a thumbs down pose with any com-
bination of hands, or a stop sign gestured with the
hand closed, palm forward, and fingertips up. Signals
disagreement with a choice by the avatar or negative
response to a question.

4)  Point. Gestured by extending a single finger, with
the optional spoken words ‘“this” or “that”. The
information given to VoxSim about pointing gestures
includes the spot on the tabletop being pointed to.
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Signals either a block to be used for a future action,
or an empty space.

5)  Grab. Indicated by a claw-like pose of the hand that
mimics grabbing a block or the word “grab”. Tells the
avatar to grab a block that was previously pointed to.

6) Carry. Indicated by moving the arm while the hand is
in the grab position, with the optional spoken word
“carry”. The information given to VoxSim includes
a direction, one of left, right, forward, back, up or
down. A “carry up” can be thought of as pick up,
and a “carry down” is equivalent to put down.

7)  Push. Gestured with a flat, closed hand moving in
the direction of the palm, with the optional spoken
word “push”. Similar to carry, it includes a direction,
although up and down are not allowed. As a special
case, a beckoning gesture signals the avatar to push
a block toward the signaler.

In addition to the multi-modal “words”, there are words that
can only be spoken, not gestured. These words correspond to
the block colors: black, red, green, blue, yellow and purple.
Speech recognition is implemented by simple word spotting,
so for example the phrase “’the red one” would be interpreted
as the single word “red.”

The flow of information from the avatar/builder back to
human/signaler is similar. The avatar can say the words and
perform the gestures mentioned above, with the additional
gesture of reaching out and touching a virtual block (a gesture
not available to the human builder). One important difference,
however, is that the avatar can also communicate through
action. Because the human signaler can see the avatar and
the virtual blocks world, they can see when the avatar picks
up or moves a block.

Any time the recognition module determines that one of the
known “words” begins or ends, VoxSim receives a message.
VoxSim responds by parsing the meaning of the gesture in
context. For example, if the gesture points to a spot on the
right side of the table and the avatar is currently holding a
block, then the gesture is a request to move the block to that
spot. Alternatively, if the avatar is not holding a block, the same
gesture selects the block nearest to the point as the subject of
the next action.

Gestural ambiguities are common. If two blocks are near
each other, a pointing gesture in their direction is an ambigu-
ous. Which block did the signaler point to? Similarly, if the
user says ‘“the red one” when there are two red blocks on
the table, the reference is ambiguous. Actions may also be
ambiguous. If the user signals the avatar to put down one block
near another, should it stack the blocks or put them side by
side?

When presented with ambiguities, VoxSim assumes the
initiative in the conversation and asks the user to choose among
possible interpretations. In the case of pointing, for example,
VoxSim might ask “do you mean the red block?”. If the answer
is negative, it might then try “do you mean the green block?”.
VoxSim orders the options according to a set of heuristics that
favor interesting interpretations over less interesting ones. For
example, if the options are to stack a red block on top of a
blue block or put them next to each other, VoxSim favors the
stacking option, because stacks are interesting.
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IV. LESSONS LEARNED

The motivation for the human studies and prototype system
described in this paper is to gain first-hand experience with
multi-modal peer-to-peer interfaces. We believe the prototype
is unique, not because it recognizes natural gestures but
because it interprets those gestures using simulation-based
reasoning in the context of a shared perceptual task.

Our experience with HAB has taught us many lessons, and
led us to quickly modify and improve it. The next subsection
walks the reader through an example of a person and an
avatar working together to build a block pattern. The remaining
subsections capture and share some of the lessons we have
learned through experience, with one important caveat: so far,
the only users of the system are its design team. Usability
studies with naive users will come later, when the system is
more mature.

A. Example

We illustrate HAB with an example in which the audio
has been turned off, so all communication happens through
gestures and actions. The example begins with three blocks
on the table: a green block and a red block to the right of
the signaler, and a blue one on the left. The signaler’s goal is
to arrange the blocks in a staircase. The conversation begins
when the signaler steps up to the table, causing an engage
gesture to be recognized and sent to VoxSim.

The signaler points to the left, as shown in Frame A of
Figure 4. VoxSim, interprets this gesture as selecting the blue
block for the next action. The avatar moves its hand toward
the blue block in anticipation; this is a gesture that serves as
a form of positive acknowledgement, since it lets the signaler
know what the avatar understood. The signaler then beckons,
and the avatar pushes the block away from itself and toward
the signaler.

Next the signaler points to his right where the red and
green blocks are (Frame B of Figure 4). This is an ambiguous
reference, so the avatar reaches toward the red block as a
way of asking whether the signaler means the red block. The
signaler shakes his head, sending a negative acknowledgement,
so the avatar motions toward the green block. This time
the signaler nods, resolving the ambiguity. The signaler then
beckons again, and the avatar pushes the green block toward
the signaler.

Continuing with the example, the signaler points toward
the blue block and gestures to slide it to the right (Frame C).
The slide gesture is ambiguous, however. Should the avatar
slide the block a little ways to the right, or slide it all the
way to the green block? Sliding it to the green block is the
more interesting option, so this is the one the avatar suggests,
and since it is what the signaler wants, he gives a thumbs up
(Frame D) and the avatar slides the block.

This style of interaction continues. The signaler selects the
red block by pointing and then mimics a grabbing motion.
Both the reference and action are unambiguous, so the avatar
complies. Next the signaler raises his arm while keeping his
hand in the grabbing pose, and brings his arm forward. The
avatar responds as shown in Frame E. The signaler then lowers
his arm and releases his grip, asking the avatar to put the block
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Fig. 4. An example of building a staircase in HAB using only gestures and
actions (no spoken language).
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down. The placement is ambiguous — should the red block go
on the blue block, the green block, or the table top? — but some
gestural back and forth quickly clear this up, and the staircase
is completed, as shown in Frame F.

B. The Uses of Gesture Types (Qualitative Observations)

What did we learn from many interactions like these? We
learned qualitative lessons about the roles of different gesture
types in dialogs with shared perceptual domains. We were then
able to make comparisons between these qualitative conclu-
sions and quantitative results from our human subject studies,
suggesting similarities between our human/avatar prototype
and true human/human interactions. Finally, we were able
to measure the accuracy with which our system recognizes
natural human gestures.

The gestures elicited from our human subjects are divided
into four categories: numeric, deictic, iconic, and social, as
listed in Table II. HAB currently recognizes 1 deictic gesture
(pointing), 3 iconic gestures (grab, carry, and push), and 3
social gestures (engage/disengage, positive acknowledge, and
negative acknowledge). The gesture recognition component
also recognizes the numbers one through five, although these
are not currently supported by the reasoning module (VoxSim).

The iconic gestures for grab, push and carry were among
the first gestures we thought to integrate into the system,
and more iconic gestures will be added in future work,
e.g. stack and rotate. After all, in a physical domain like
blocks world, iconic gestures tend to directly represent the
underlying actions. Not all action gestures are representational:
the beckoning motion used to draw a block toward the user
is a social convention, and doesn’t mimic a human action.
Nonetheless, iconic gestures tend to correspond to actions and
be representational.

Interestingly, users feel less comfortable with iconic ges-
tures than deictic ones. The prototype can be run in two
modes, with and without the audio channels (i.e. words). We
do not have quantitative measures because the prototype is
not yet robust enough for naive user studies, but when the
audio channel is on, users tend to say the words grab, push or
carry rather than make the gestures (sometimes they do both).
This is true even though the words push and carry have to be
expanded with directional phrases (e.g. “to the left”).

Pointing, on the other hand, seems completely natural.
Users do it almost without thinking, and do it whether or
not the audio channel is available. This may be because the
alternative often requires a description (“the red block™ or “the
red block on the left” if there are two), although we noted
above that actions may also require descriptions in form of
directions.

Social gestures turn out to be critically important. They
maintain the structure of the dialog. In an early version of
HAB, the human users could only gesture and the avatar could
only act and ask disambiguating questions. The system was
uncomfortable to use, because the user would point to a block
and then not be sure whether the avatar had seen the gesture or
if they should point again. Ironically, it was almost better when
the pointing gesture was ambiguous, because then the avatar
would ask a clarifying question. We then gave the avatar her
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first gesture, reaching toward a block when it was referenced
as a form of positive acknowledgement. Immediately the users
became more comfortable and tasks were completed more
quickly.

The timing of seeking and giving acknowledgement is
important. We tested a version of the prototype in which the
avatar always waited for confirmation before taking actions.
This was slow and frustrated the users. More importantly,
because acknowledgements were so common the conversation
would often hit an impasse when the avatar was waiting for
an acknowledgement that the signaler thought they had already
given.

For comfort, peer-to-peer dialogs require that when one
partner provides information, the other acknowledges receiving
it. This is sometimes called backchannel communication. If
the information is a request for an action, such as grab, then
performing the action is sufficient acknowledgement. If the
information is ambiguous, asking to clarify it also serves as
acknowledgement. In all cases, however, some form of positive
acknowledgement is required from whichever partner, human
or avatar, receives the information.

Because acknowledgements are so common, it is important
that they be unintrusive. Too many verbal acknowledgements
quickly become annoying. The ability to positively acknowl-
edge through head nods is important because it can be done
without interrupting the audio stream and without interrupting
other gestures by the hands.

Acknowledgements (positive or negative) in response to
ambiguity are important, as they allow the system to engage
in the conversational act of repair [42], or the use of clarifying
and re-referring to correct misunderstandings in discourse. The
recognition of the social gestures mentioned before are key to
the system’s ability to tackle ambiguity. These gestures enable
natural and rapid feedback in order to complete tasks and allow
the system to function as a human-like conversational agent.

C. Human/Human vs Human/Avatar Gesture Usage

The observations above were qualitative, based on our own
experience. Studies with naive users are being planned, but fur-
ther development is required to make sure that system artifacts
don’t distract naive users and invalidate the data. What we can
do now, however, is test if our qualitative predictions match
quantitative data from the human/human interaction studies. If
so, this supports our predictions and suggests that there are at
least similarities between human/humann interaction and our
prototype human/avatar system.

As shown in Section III-A, we have labeled data from
over 180 trials of human/human blocks world interactions
in both the audio+video and video-only conditions. Based
on our qualitative predictions, social gestures — particularly
positive and negative acknowledgements — should outnumber
iconic and deictic gestures in both conditions. Iconic gestures
should appear more often in the video-only condition than the
audio+video condition. Deictic gestures should appear with
similar frequencies in both conditions.

Table III shows the frequencies of gestures in the hu-
man/human studies, organized by condition and gesture type.
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TABLE III. FREQUENCIES OF GESTURES IN HUMAN DATA IN THE
VIDEO ONLY AND VIDEO-+AUDIO CONDITIONS, ORGANIZED BY GESTURE
CATEGORY. THE RATIO IS FREQUENCIES BETWEEN THE TWO CONDITIONS
IS A MEASURE OF HOW MUCH MORE LIKELY WAS A GESTURE TO BE MADE

WHEN THE AUDIO WAS TURNED OFF, VERSUS WHEN WORDS ARE

AVAILABLE.
Gesture [ Video Only [ Video + Audio | Total | Ratio
Iconic Gestures
Translate 234 73 307 32
Rotate 225 67 292 34
Separate 126 125 251 1.0
Servo Translate 206 44 250 4.7
Bring Together 83 38 121 22
Servo Toward 35 20 55 1.7
Iconic Total 909 367 1,276 2.5
Deictic Gestures
This Block 240 94 334 2.6
That/There 150 106 256 1.4
Here/This 111 42 153 2.6
This Group 86 28 114 3.1
This Column 52 13 65 4.0
This Stack 38 16 54 2.4
These Blocks 24 20 44 1.2
Deictic Total 701 319 1,020 2.2
Social Gestures
Pos. Acknowledge 693 225 918 3.1
Wait (Pause) 400 246 646 1.6
Start 100 51 151 2.0
Done 81 47 128 1.7
Neg. Acknowledge 109 11 120 9.9
Emphasis 17 27 44 0.6
Social Total 1,371 607 1,978 23
Numeric Gestures
One 85 18 103 4.7
Two 64 9 73 7.1
Three 26 4 30 6.5
Four 21 5 26 4.2
Numeric Total 196 36 232 5.4

The gesture labels do not match up with the gestures recog-
nized by HAB. There are many more gestures in the human
data, and the gesture labels are more semantic. All gestures that
are intended to make a partner wait, for example, are grouped
into one category. Servo gestures are the continual gestures as
in “a little more... a little more...”. For a complete explanation
of gestures, see [43].

Our first prediction based on HAB was that social gestures
should be more common than iconic or deictic gestures.
According to Table III this is true, although not by a large
margin: 1,371 social gestures versus 1,276 iconic. Social
gestures sometimes went unnoticed by the labelers, however,
so the true disparity may be larger.

Our second prediction was that iconic gestures should
appear more often in the video-only condition than the
video+audio condition. It turns out that all gestures are more
common in the video-only condition, because when people
can’t hear each other they gesture more. This is why we
included the ratio of frequencies between the two conditions in
Table III. While the ratio is positive for all four gesture types, it
is higher for iconic (2.5) than for social (2.3). Deictic gestures
have the lowest ratio at 2.2. Although not implemented in
HAB, numbers have by far the highest ratio at 5.4. Apparently
people rarely gesture a number if they can simply say it.

D. Coordinate Systems

To ground deixis, the signaler and builder must agree on a
coordinate system. In some dimensions the coordinate system
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is obvious; up is always against gravity, and down is always
with it. The other dimensions aren’t as clear, however.

Our initial mental model was that the signaler and builder
were at different ends of a shared table; think of Figure 2
without the gap between tables. In this model, the signaler’s
left is the builder’s right, and vice-versa. This seems natural in
practice, and re-examining the human subjects data it is indeed
the coordinate system that our test subjects used.

This same model would predict that the edge of the table
closest to the signaler is farthest from the builder and vice-
versa. Thus if a signaler gesturally pushes a block away, the
avatar should pull the block toward herself. Conversely, if a
signaler pulls a block toward themself, the avatar should push
the block away. But somehow, this doesn’t seem as natural in
practice.

Re-examining the human subjects data, human builders
are inconsistent when a human signaler pushes a block away.
About half the time, builders pull the block toward themselves.
The other half of the time they push the block away. In
the video-only trials, this was a source of confusion. In
the video+audio trials, signalers and builders resolved the
coordinate system verbally, using phrases like “toward you” or
“toward me”. This suggests an interesting interaction between
speech and gesture in the context of deixis.

E. Recognition Accuracy

One concern that arose while designing HAB was whether
gesture recognition would be accurate enough to support peer-
to-peer communication. While there have been many previous
3D gesture-based interfaces, most have been designed to detect
large-scale gestures, for example gaming motions or scuba
diving signals, as in the ChaLearn challenge [44]. We needed
to recognize natural gestures elicited from naive users in the
context of blocks world, and were counting on new sensors
and recogntion techniques to make this possible.

In particular, we were counting on the Kinect sensor to
extract accurate depth maps, and the Kinect pose data (a.k.a.
skeleton) to reliably identify the locations of the hands and
head. We were also relying on ResNet-style deep convolutional
neural networks (DCNNs) [34] to recognize hand poses in
segmented depth images, and to recognize head motions given
a time window of differences of depth images. A significant
risk factor with regard to DCNNs was whether we had enough
training data to train reliable networks.

Training samples were extracted from the human subjects
studies described in Section III-A, which we hand labeled [43].
For 25 hand poses, this yielded a significant number of training
samples. There were other hand poses, such as thumbs down,
that appeared less often but that we still wanted to include in
the system. We therefore supplemented the training samples
for 10 more hand poses by having volunteers perform the
poses in front of the Kinect. Unfortunately, the data collected
in this way turned out to be exaggerated compared to naturally
occurring poses.

When the prototype was completed, signalers reported
satisfaction with the gesture recognition. In practice, the sys-
tem rarely missed gestures or inserted false gestures. There
are many possible explanations for this, however, including
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Fig. 5. Precision of hand pose detection. The horizontal axis represents
durations of detected hand poses. The vertical axis is the percent of true
detections as judged by naive raters. The blue line shows the precision of the
25 hand poses trained on the human subjects data. The orange line adds 10
more poses for which additional, exaggerated training data was collected.

that the signalers were system designers with an interest in
gesturing clearly. Furthermore, although the gesture recogni-
tion system detects 35 hand poses, only a subset are fused
by the finite state machines into the 7 multi-modal gestures
integrated with VoxSim. The underlying performance of hand
pose recognition was therefore still unknown.

To evaluate the accuracy of hand pose recognition, we
collected new data from 14 naive human subjects, using the
same experimental setup and protocol as in Section III-A. We
didn’t have the resources to hand label every frame, so instead
we adopted a sampling methodology. The new videos were
processed through the DCNN hand pose classifier. To estimate
precision, we randomly sampled 60 instances of each hand
pose as identified by the DCNN. We then brought in naive
raters and asked them whether the detected gestures actually
occurred where the DCNN said they did.

The precision results are shown in Figure 5. The units of
the horizontal axis are seconds, so that the leftmost data point
1

is the precision for gesture detections that lasted for ¢ of a

second or less. The second data point represents detections
with a duration between 1 and 2 of a second, and so on. The
orange line represents the precision across all 35 poses, while
the blue line shows the precision for the 25 poses trained on
data from the human subjects studies. The plot shows that even
for gestures that last for % of a second or less, over 55% of
the DCNNs detections are correct. Long duration gestures (one
second or more) have a precision of 80%. When we limit the
evaluation to the 25 naturally trained poses, these numbers go

up to 60% for short gestures and 87% for long ones.

Recall was estimated using a similar procedure. In this
case, naive raters were given portions of videos, and asked
to label any hand poses they saw. For each pose, they selected
one frame. (Although not instructed to do so, they usually
selected the first frame in which the pose appeared.) We then
measured how often the DCNN detected the hand pose at that
frame, within a fifth of a second of that frame, within two
fifths of a second, and so on, up to a second. The resulting
plot is shown in Figure 6, with the same color scheme as in
Figure 5 in terms of recall for 25 or 35 poses.

Interestingly, almost half the recall omissions are the result
not of mistakes by the DCNN, but of segmentation failures.
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Fig. 6. Recall of hand pose detection. The horizontal axis is the time
difference between the frame selected by a naive rater and the automatic
detection. The vertical axis is the percent of recall. The blue and orange lines
indicate the same distinction between 25 and 35 poses as in Figure 5.

The depth images passed to the DCNN are windows of
the full image centered on the hand, as identified by the
Microsoft skeleton. When the hand position is incorrect, failure
is inevitable.

V. CONCLUSION

This paper investigates peer-to-peer communication be-
tween people and avatars in the context of a shared perceptual
task. In our experiments, people communicate with avatars us-
ing gestures and words, and avatars communicate back through
gestures, words, and actions. Together, they complete tasks
through mixed initiative conversations. The human signaler
has the initial goal and tells the avatar what to do, but when
ambiguities arise the initiative shifts and the avatar asks the
human for clarification. Social cues make this process flow
naturally. Overall, we demonstrate an example of peer-to-peer
cooperation between people and machines, through shared
perception and perceptually-grounded reasoning.
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