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Horizontal gene transfer mediated by conjugation is considered an important

evolutionary mechanism of bacteria. It allows organisms to quickly evolve new

phenotypic properties including antimicrobial resistance (AMR) and virulence.

The frequency of conjugation-mediated cargo gene exchange has not yet been

comprehensively studied within and between bacterial taxa. We developed a

frequency-based network of genus-genus conjugation features and candidate

cargo genes from whole-genome sequence data of over 180,000 bacterial

genomes, representing 1,345 genera. Using our method, which we refer to as

ggMOB, we revealed that over half of the bacterial genomes contained one or

more known conjugation features that matched exactly to at least one other

genome. Moreover, the proportion of genomes containing these conjugation

features varied substantially by genus and conjugation feature. These results

and the genus-level network structure can be viewed interactively in the

ggMOB interface, which allows for user-defined filtering of conjugation

features and candidate cargo genes. Using the network data, we observed

that the ratio of AMR gene representation in conjugative versus non-

conjugative genomes exceeded 5:1, confirming that conjugation is a critical

force for AMR spread across genera. Finally, we demonstrated that clustering

genomes by conjugation profile sometimes correlated well with classical

phylogenetic structuring; but that in some cases the clustering was highly

discordant, suggesting that the importance of the accessory genome in driving

bacterial evolution may be highly variable across both time and taxonomy.

These results can advance scientific understanding of bacterial evolution, and

can be used as a starting point for probing genus-genus gene exchange within

complex microbial communities that include unculturable bacteria. ggMOB is

publicly available under the GNU licence at https://ruiz-hci-lab.github.io/

ggMOB/
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1 Introduction

Several mechanisms of horizontal gene transfer (HGT) allow

bacteria to exchange genetic material. One of these mechanisms,

termed conjugation, occurs when bacterial cells form direct

physical contacts that allow for passage of genetic material

from one bacterium to another. The machinery required to

form these contacts and initiate genetic exchange is often

contained within integrative and conjugative elements (ICE),

plasmids, and other mobile genetic elements (MGEs) (Frost et al.,

2005; Wozniak and Waldor, 2010; Roberts and Mullany, 2011;

Wiedenbeck and Cohan, 2011; Perry and Wright, 2013; Johnson

and Grossman, 2015; Singer et al., 2016). The conditions that

induce excision and conjugation are not fully elucidated, but

DNA damage and subsequent SOS response seem to be an

important trigger (Waldor et al., 2004; Koraimann and

Wagner, 2014). The cost of acquiring and maintaining the

new genetic material also influences the success of transfer

events (Uhlemann et al., 2021).

Genes exchanged between bacteria during conjugation

include functional domains associated with conjugative

machinery (e.g., excisionases, integrases, conjugative transport

proteins) as well as intervening “accessory” genes that are not

necessary for conjugation, often termed “cargo genes” (Johnson

and Grossman, 2015). By pairing conjugative machinery with an

array of diverse cargo genes, bacterial communities can

significantly expand their genetic repertoire, including between

bacteria of diverse taxonomy (Guglielmini et al., 2011; Bellanger

et al., 2014; Neil and Allard, 2021). Functions commonly

associated with conjugative cargo include antimicrobial

resistance (AMR) and virulence (Roberts and Mullany, 2011;

Perry and Wright, 2013; Johnson and Grossman, 2015; Cury

et al., 2017), which can pose a risk to human and animal health if

transferred into pathogens (Partridge et al., 2018). Therefore,

understanding the microbial ecology of conjugative elements and

cargo genes (i.e., their distribution and behavior across bacterial

taxa) is important in assessing the risk posed by various bacterial

communities (Gaston et al., 2021). For example, how often do

different bacterial taxa carry conjugative machinery and AMR

genes; what resistance phenotypes are commonly associated with

the presence of conjugative machinery within the genome; how

often do different commensal bacterial taxa carry out

conjugation to exchange cargo genes with pathogens; and

what conditions foster conjugative exchange of specific cargo

genes between pathogens and non-pathogens? These questions

are fundamental to understanding how bacterial communities

respond to external stimuli, and how these responses increase the

overall risk posed by microbial communities of varying

composition (Martínez et al., 2015; Oh et al., 2018).

However, the process of conjugative HGT is highly stochastic

and therefore, difficult to predict (Lopatkin and Collin, 2020).

One reason for this stochasticity is variability in the conjugation

competency of donor and recipient bacterial cells for a given

conjugative MGE; as well as variability in the capacity of a given

type of conjugative MGE to also transfer unrelated cargo genes.

Recent meta-analyses of conjugation rates for specific bacterial

species and/or MGEs have highlighted these complexities

(Alderliesten et al., 2020; Sheppard et al., 2020). Historically,

the scientific process for estimating conjugative likelihood has

stemmed from highly controlled in vitro experiments between

pairs of bacterial isolates and specific MGEs. Results from such

studies have been crucial for uncovering the behavior of MGEs

and their importance for functions such as AMR. However,

reductive experiments typically do not generalize well to the

complex microbial communities found in situ, including host

and environmental microbiomes. Furthermore, these

experiments are necessarily restricted in their ability to

characterize the full bacterial host range of a given MGE, as

they typically involve only several distinct bacterial taxa. One

major challenge that remains is to generate a conjugation

likelihood for every host-donor-MGE combination observed

across all bacterial taxa and MGE.

Insight into this challenge can be gained through the plethora of

whole genome sequence (WGS) data which is now publicly

available. As an example, the analysis of HGT-associated genes

from just 336 genomes across 16 phyla was sufficient to significantly

improve bacterial phylogenies as compared to those obtained from

conserved marker genes (Abby et al., 2012). An analysis of

1,000 genomes demonstrated that ICE machinery is ubiquitous

across diverse prokaryotes, and likely one of the most common

mechanisms of bacterial evolution (Guglielmini et al., 2011).

Currently, public datasets contain orders of magnitude more

WGS data, which can be used to improve our understanding of

the mechanisms by which critically important genes and pathogens

emerge and persist (Botelho et al., 2020). However, despite the

importance of HGT in bacterial evolution and pathogenicity, there

has not yet been a comprehensive, systematic survey of the

frequency of conjugation and cargo genes within or between

bacterial genera. The objective of this work was to describe intra-

and inter-genus conjugation-cargo dynamics by leveraging the

comprehensive set of WGS data and conjugation sequences

currently available within the Reference Sequence (RefSeq) and

Short Read Archive (SRA) databases at the National Center for

Biotechnology Information (NCBI). In particular, we analyzed

186,887 WGS datasets to identify putative conjugation events

and corresponding candidate cargo genes, as well as to

characterize the frequency of AMR genes with respect to the

frequency of their occurrence with conjugative proteins. We were
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TABLE 1 Conjugative features included in this study. Color label indicates the color used to represent the conjugative feature in Figure 2. Yellow
indicates a conjugative feature defined by a single IPR code and red indicates a family of codes. Genome count indicates the number of genomes
that contain the conjugative feature.

Label Conjugative
feature

Genome
count

Description

ICE6013 93,267 Includes IS30-like DDE transposase. More closely related to ICEBs1 than Tn5801 Smyth and Robinson. (2009)

Tn916 59,718 TetM and other resistance genes Clewell et al. (1995)

IPR025955 49,841 Type-IV secretion system protein TraC
Finn et al. (2016)

ICEEc2 49,543 set of three genes encoding DNA mobility enzymes and type IV pilus Roche et al. (2010)

IPR005094 42,760 Endonuclease relaxase, MobA, VirD2 Finn et al. (2016)

ICEhin1056 42,252 Antibiotic resistance island Mohd-Zain et al. (2004)

IPR011119 28,752 Unchar. domain, putative helicase, relaxase Finn et al. (2016)

IPR014862 26,295 TrwC relaxase Finn et al. (2016)

IPR014059 23,368 Conjugative relaxase, N-terminal Finn et al. (2016)

PAPI-1 22,855 Pathogenicity island PAPI-1 of strain PA14.115 gene cluster includes virulence phenotypes Qiu et al. (2006)

pKLC102 22,460 Hybrid of plasmid and phage origin includes replication, partitioning, conjugation, pili, & integrase genes
Klockgether et al. (2004)

IPR021300 22,284 Integrating conjugative element protein Finn et al. (2016)

IPR022391 21,465 Integrating conjugative element relaxase, PFGI-1 class Finn et al. (2016)

IPR022303 19,664 Conjugative transfer ATPase Finn et al. (2016)

ICEPdaSpa1 19,424 An SXT-related ICE derived; causative agent of fish pasteurellosis Osorio et al. (2008)

IPR014129 18,029 Conjugative transfer relaxase protein TraI Finn et al. (2016)

SXT 17,525 Family of conjugative-transposon-like mobile elements encoding multiple AR genes Beaber et al. (2002); Burrus
et al. (2006)

ICEEc1 10,170 High-pathogenicity island (HPI); evidence for Combinatorial Transfers Paauw et al. (2010)

R391 9,916 Archetype of IncJ; carries AR, DNA repair, & mercury resistance genes Böltner et al. (2002)

ICEKp1 9,117 Resembles functional ICEEc1 Paauw et al. (2010)

ICESde3396 9,088 Carries genes predicted to be involved in virulence and resistance to various metals Smyth et al. (2014)

ICEBs1 8,504 Plasmid mobilization and putative coupling protein Lee et al. (2012)

RD2 8,370 Encodes seven putative secreted extracellular proteins Sitkiewicz et al. (2011)

IPR011952 2,640 Conserved hypothetical protein CHP02256 Finn et al. (2016)

IPR014136 2,050 Ti-type conjugative transfer relaxase TraA Finn et al. (2016)

TnGBS2 1,630 See ICE6013 Everitt et al. (2014)

CTnBST 1,520 Tyrosine recombinase family Song et al. (2007)

ICEclc 1,465 Cargo for ortho-cleavage of chlorocatechols and aminophenol metabolism (amr genes) Obi et al. (2018)

GI3 1,340 Degradation of aromatic compounds and detoxification of heavy metals Lechner et al. (2009)

(Continued on following page)
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able to identify over 95,000 genomes containing conjugative proteins,

and more than 4 billion putative cargo genes between genomes. We

summarize and disseminate this analysis through an open-source

network that describes the genus-genus sharing of conjugation

features and cargo genes, representing genomes from over

1,300 different genera. Our network, which we refer to as ggMOB,

allows users to filter for both conjugation features and putative cargo

genes. Using ggMOB we analyzed the ratio of AMR gene

representation in conjugative versus non-conjugative genomes and

found it to be greater than 5:1, confirming that conjugation is a critical

force for AMR spread across genera. Finally, we demonstrated that

clustering genomes by conjugation profile sometimes correlated well

with taxonomic structuring, but in some cases was highly discordant,

suggesting that the importance of the accessory genome in driving

bacterial evolutionmay be highly variable across genera. These results

demonstrates that ggMOB can be used to further probe potential

genus-genus mobilization dynamics, and thus, provide insight into

conjugative mobilization between unculturable bacteria and complex

interactions involving multiple genera.

2 Results

2.1 Overview of ggMOB

The analyses conducted in this paper were derived from an

existing resource (Seabolt et al., 2020), which was constructed by

curating and annotating 186,887 genomes from NCBI (see

MATERIALS AND METHODS). Using the sequence data and

annotated features obtained from over 166,000 curated and high-

quality WGS datasets, we identified genomes that contained

conjugative features (Table 1), which we term conjugative

genomes (see MATERIALS AND METHODS). By recording

counts of shared features across these conjugative genomes, we

constructed ggMOB (the “genus-genus mobilization” network),

which contains information about features that are shared

between conjugative genus-genus pairs.

2.2 Inter- and intra-genus conjugation
profiles

Of the 106,443 genomes that contained at least one

conjugative feature, 95,781 shared at least one conjugative

feature with at least one other genome in the set, indicating a

common evolutionary history. These 95,781 conjugative

genomes represented close to 47% (631 of the 1,345) of the

genera contained in the relational database (Seabolt et al., 2020).

The lack of conjugative machinery in the other 714 genera may

be a false negative finding (i.e., incomplete list of conjugative

features, lack of representation in the utilized NCBI databases, or

lack of inclusion in genome assemblies), or could indicate

inherent differences in the conjugative ability of genera across

the taxonomic tree. Similarly, one might reasonably expect the

number of observed conjugative genomes to scale with the

number of genomes available for each genus. However, genus

TABLE 1 (Continued) Conjugative features included in this study. Color label indicates the color used to represent the conjugative feature in Figure 2.
Yellow indicates a conjugative feature defined by a single IPR code and red indicates a family of codes. Genome count indicates the number of
genomes that contain the conjugative feature.

Label Conjugative
feature

Genome
count

Description

Tn1549 648 VanB-type resistance to glycopeptides with regions Garnier et al. (2000)

CTn341 389 Encodes tetracycline resistance and its transfer is induced by tetracycline Peed et al. (2010)

IPR020369 119 Mobilisation protein B Finn et al. (2016)

(i) excision-integration process Garnier et al. (2000)

Tn4555 79 Includes cfxA gene encoding

broad-spectrum beta-lactamase Smith and Parker (1993)

ICESt1 26 Integrative and putative transfer functions Burrus et al. (2002); Bellanger et al. (2009)

ICEMISymR7A 16 Rhizobial symbiosis genes Ramsay and Ronson (2015)

ICESt3 14 Integrative and putative transfer functions Bellanger et al. (2009)

(ii) vanB2 operon replaces tet(M) Garnier et al. (2000)

(iii) Conjugative transfer Garnier et al. (2000)

Tn4371 0 Biphenyl and 4-chlorobiphenyl degradation Springael et al. (1993)
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TABLE 2 Proportion of genomes that contained conjugative feature(s), by genus. All genera with over 100 representative genomes are listed, in
descending order by the proportion of conjugative genomes in each genus.

Genus Number of conjugative genomes Number of total genomes Proportion conjugative genomes

Legionella 1,672 1,686 0.99

Shigella 5,423 5,541 0.98

Klebsiella 4,682 5,304 0.88

Elizabethkingia 102 119 0.86

Escherichia 8,140 9,957 0.82

Stenotrophomonas 441 563 0.78

Enterobacter 894 1,210 0.74

Vibrio 2,902 4,017 0.72

Acinetobacter 2,621 3,770 0.70

Pseudomonas 3,222 4,750 0.68

Enterococcus 1,003 1,516 0.66

Citrobacter 131 203 0.65

Salmonella 24,123 38,808 0.62

Clostridioides 1,329 2,183 0.61

Streptococcus 8,244 13,766 0.60

Xanthomonas 201 357 0.56

Staphylococcus 18,034 32,661 0.55

Rhizobium 110 202 0.54

Yersinia 215 437 0.49

Lactococcus 57 117 0.49

Serratia 230 619 0.37

Sinorhizobium 44 121 0.36

Bifidobacterium 137 403 0.34

Moraxella 65 192 0.34

Bacillus 471 1,471 0.32

Campylobacter 5,340 19,501 0.27

Aeromonas 80 312 0.26

Brucella 230 970 0.24

Mesorhizobium 89 385 0.23

Helicobacter 118 529 0.22

Streptomyces 74 333 0.22

Corynebacterium 133 639 0.21

Neisseria 153 781 0.20

Burkholderia 341 2,053 0.17

Haemophilus 65 403 0.16

Lactobacillus 144 962 0.15

Listeria 848 7,716 0.11

Clostridium 40 454 0.09

Mycobacterium 1,120 13,129 0.09

Cutibacterium 10 118 0.08

Bordetella 60 733 0.08

Chlamydia 33 496 0.07

Bartonella 3 124 0.02

Mycoplasma 2 251 0.01

Francisella 0 120 0.00
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representation in NCBI is not uniform across genera, leading to bias

in available genomes per genus. To correct for this imbalance, we

computed the conjugative genome proportion by normalizing the

number of observed conjugative genomes to the total number of

genomes per genus (Table 2). This analysis demonstrated that the

genera with the largest fraction of conjugative genomes were not the

genera with the most genomes in NCBI. For example, although

Salmonella had by far the greatest number of high quality genomes

(N = 39,574), it ranked fifth in terms of the proportion of genomes

that contained a conjugative feature. The top 30 genera listed in

Table 2 all had a conjugative genome frequency greater than 20%,

with genomes from the genus Legionella containing conjugative

proteins over 99% of the time. This high percentage may have been

driven by sampling bias in the available NCBI WGS datasets (for

example, the Legionella pneumophila WGS accessions appear to

have been collected from a single site), or it may represent the

propensity for conjugation-mediated processes to occur within

individual genera.

TABLE 3 Count and proportion of inter- and intra-genus detection of conjugative features.

Conjugative No. Inter-genus Prop. Inter-genus No. of intra-genus Prop. Intra-genus
Feature Matches Matches Matches Matches

IPR014059 122,066 0.02 6,098,286 0.98

IPR014862 123,175 0.02 6,246,342 0.98

IPR005094 415,744 0.11 3,224,556 0.89

IPR014136 43 0.00 83,448 1.00

Tn916 110,710,102 0.61 71,585,305 0.39

GI3 74,775 0.20 304,550 0.80

ICEPdaSpa1 8,356,908 0.37 14,101,581 0.63

ICEclc 75,322 0.20 304,722 0.80

ICEhin1056 128,834,838 0.69 58,590,390 0.31

IPR011119 454,906 0.03 16,981,338 0.97

IPR021300 69,832 0.00 20,685,606 1.00

IPR022303 44,341 0.01 7,859,462 0.99

IPR022391 52,638 0.00 14,265,248 1.00

IPR025955 55,3687 0.02 32,073,159 0.98

SXT 17,427,985 0.58 12,525,984 0.42

CTn341 7,760 0.72 3,036 0.28

ICEEc1 1,107,736 0.18 5,010,865 0.82

ICEEc2 28,902,519 0.33 58,830,977 0.67

ICEKp1 1,629,343 0.20 6,550,799 0.80

IPR011952 50 0.00 3,154,129 1.00

IPR014129 75,786 0.02 4,557,985 0.98

R391 796,084 0.10 7,476,937 0.90

Tn4555 972 0.72 382 0.28

pKLC102 10,135 0.00 5,277,724 1.00

IPR020369 577 0.12 4,406 0.88

Tn1549 866 0.04 23,336 0.96

ICESde3396 7,659 0.00 1,676,016 1.00

CTnBST 337,318 0.63 196,675 0.37

ICEBs1 0 0.00 1,220,869 1.00

ICE6013 46,112 0.00 406,783,868 1.00

ICESt1 31 0.12 237 0.88

ICEMISymR7A 0 0.00 37 1.00

PAPI-1 0 0.00 6,101,539 1.00

ICESt3 0 0.00 97 1.00

RD2 0 0.00 1,547,322 1.00

TnGBS2 0 0.00 56,243 1.00
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Next, we identified a total of 5,956 conjugation proteins

across genus pairs, i.e., triples of the form (genus1, genus2,

protein-name), associated with a total of 23,353,196,048 cargo

protein sequences. These results are visualizable as connected

nodes in the ggMOB network. This count is non-distinct by

protein name as, for instance, Tyrosine recombinase XerD was

found both between Salmonella-Salmonella genomes, as well as

between Oligella-Proteus genomes and other genera pairs. Of

these 5,956 triples, 1,680 contained genome pairs belonging to

the same genus (i.e., intra-genus). Some genera were much more

likely to contain genomes with conjugative features that matched

to genomes from other genera, i.e., inter-genus. For example, we

observed over 30 million instances of matching conjugation

proteins in genomes from the Acinetobacter genus. Of these

instances, 84% were to genomes from other genera (i.e., inter-

genus), versus 16% from genomes within Acinetobacter

(i.e., intra-genus). Members of the Acinetobacter genus are

well-known for genome plasticity (Chan et al., 2015), which

contributes to important phenotypes such as AMR and biofilm

formation.

Genera that shared the highest number of conjugation

proteins with Acinetobacter genomes included Escherichia,

Shigella, Vibrio, Salmonella, Pseudomonas, Klebsiella,

Enterobacter and Citrobacter. While this result was not

unexpected given the list of known pathogens contained

within these genera, our database of intra- and inter-genus

exact-match conjugative features also revealed many

unreported and unexpected associations. For example,

genomes within the genus Nitrosomonas contained

38,034 instances of conjugative proteins, nearly 100% of

which were shared with genomes from the Shigella genus. The

specific conjugative feature involved in the vast majority of these

exact matches was ICEEc2, a relatively recently discovered ICE

MGE that was previously shown to transfer competently between

Salmonella enterica serovar Typhimurium strain and into a

Yersinia pseudotuberculosis strain. Our results suggest that

ICEEc2 has a very broad host-donor range, including many

genera that may not yet be described in the literature in

reference to this particular ICE.

We found that the likelihood of identifying conjugative

features in pairs of genomes within versus across genera was

highly variable. Of the 36 conjugative features analyzed, 13 were

only identified in pairs of genomes belonging to the same genus,

i.e., intra-genus (Table 3). However, six conjugative features were

more likely to be observed across genera than within genera,

i.e., > 50% of the observations were inter-genus (Table 3). For

example, the exact same CTn341 sequence was observed in pairs

of genomes a total of 10,796 times; in 72% of these instances, the

pairs of genomes belonged to different genera, indicating a

history of inter-genus transfer of CTn341. This conjugative

feature belongs to the ICE family of MGEs and plays an

important role in tetracycline resistance, and is typically

associated with the genus Bacteroides, including in most

reports related to its functionality (Bacic et al., 2005).

However, we observed that 17% of the genome pairs

containing exact-match CTn341 sequences belonged to the

Bacteroides and Alistipes genera, suggesting historical transfer

of this important ICE between these genera. Alistipes is an

emerging genus with potential health implications (Parker

et al., 2020), and the epidemiology and ecology of

CTn341 within this genus warrants further investigation.

Furthermore, this finding provides additional insight into the

potential importance of CTn341 in spreading tetracycline

resistance genes across microbial taxa.

2.3 Cargo gene profiles

To characterize the set of genes that are most likely to have

been associated with conjugative HGT events, we identified all

proteins that were contained in at least two conjugative genomes

with 100% sequence identity. Out of 51,362,178 total unique

protein sequences in the source database, 28,042 were identified

as conjugation-associated proteins (i.e., conjugation machinery),

and 11,276,651 were identified as candidate cargo proteins. The

full set of cargo proteins mapped to 20,550 distinct names

(excluding “putative protein(s)” or “hypothetical protein(s)”),

with a wide range of frequencies within and between genera.

Annotation of the conjugative genomes demonstrated that the

vast majority of conjugative and cargo proteins were adjacent

within the genome (Figure 2). Moreover, within each genome,

the conjugative features were more likely to be proximate to

putative cargo protein versus non-cargo proteins, suggesting

again a common evolutionary history.

2.4 Genotypic AMR and association with
conjugation features

A subset of the observed cargo protein names were associated

with a set of confirmed AMR protein names. We identified this

subset by selecting only those names that Prokka assigned to

sequences mapping to a name defined in MEGARes v1.0 (Lakin

et al., 2016), a comprehensive AMR database. The entity relations

in our database ensured a 1:1 mapping between gene and protein

names and their respective sequences. Of the 3,824 distinct

sequences contained in MEGARes, Prokka identified 3,674 as

valid sequences coding for protein. These 3,674 distinct proteins

were assigned 286 distinct names, excluding “putative protein”

and “hypothetical protein”. These unnamed proteins comprised

just 1% of theMEGARes protein set.While this highly curated set

is certainly not a comprehensive list of all proteins contributing

to AMR, it is an initial set to estimate the fraction of AMR

proteins within the larger set of conjugation and cargo proteins.

To further investigate the microbial genomics of AMR in

relation to HGT events, we used plasmid sequences from NCBI
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to identify the set of AMR-specific cargo proteins found in a

plasmid sequence. We then compared the distribution of AMR

proteins in plasmids versus conjugative genomes (Figure 3). The

distribution of AMR genes differed between plasmids and

conjugative genomes, with a high probability that AMR genes

were identified in conjugative (versus non-conjugative) genomes,

and a much lower probability of being identified in plasmids

(Figure 3). While plasmids are often critical to the microbial

ecology of AMR, this analysis suggests that other conjugative

processes may drive the vast majority of AMR gene exchanges

between bacteria. This dynamic has been reported for specific

AMR gene groups, including carbapenem AMR genes (Botelho

et al., 2020), and also supports previous analyses of conjugative

machinery across bacterial genera (Guglielmini et al., 2011).

To analyze the distribution of AMR proteins across genomes,

we calculated the probability that each AMR gene was identified

TABLE 4 Probability of observing AMR proteins in genomes that also contained conjugative features.

AMR protein name Number of
Genomes

Number of Conjugative
Genomes

Proportion Conjugative
Genomes

Rob DNA-binding transcriptional activator 4,559 4,559 1.00

Transposon Tn10 TetD protein 4,559 4,559 1.00

Tetracycline resistance gene Tet(M) 441 441 1.00

Outer membrane protein YedS 288 288 1.00

Regulator of RpoS 288 288 1.00

Beta-lactamase Toho-1 319 318 1.00

AcrAD-TolC permease subunit 1,584 1,576 0.99

Multidrug efflux pump subunit AcrB 1,584 1,576 0.99

DNA topoisomerase subunit A 1,091 1,085 0.99

MATE family multidrug efflux pump protein 1,607 1,596 0.99

Carbapenem-hydrolyzing beta-lactamase KPC 1,914 1,899 0.99

Beta-lactamase OXA-1 1,188 1,175 0.99

Inner membrane protein HsrA 350 346 0.99

Putative transport protein YdhC 342 338 0.99

Aclacinomycin methylesterase RdmC 419 414 0.99

Beta-lactamase OXA-2 199 196 0.98

Chloramphenicol efflux MFS transporter
CmlA1

795 783 0.98

Beta-lactamase OXA-10 521 513 0.98

armA* 994 978 0.98

rRNA large subunit methyltransferase H 4,087 3,989 0.98

Multidrug resistance operon repressor 486 67 0.14

Outer membrane protein OprM 478 65 0.14

Methicillin-resistance regulatory protein MecR1 8,344 1,007 0.12

Phosphoethanolamine-lipid A transferase 8,344 1,007 0.12

HTH-type transcriptional repressor BepR 467 55 0.12

Bifunctional polymyxin resistance protein ArnA 507 53 0.10

Methicillin resistance regulatory protein MecI 6,583 395 0.06

Metallothiol transferase FosB 6,584 395 0.06

Multidrug efflux transporter MdtL 419 9 0.02

Multidrug efflux pump subunit AcrA 420 7 0.02

HTH-type transcriptional regulator SyrM 1 414 3 0.01

RND transporter permease subunit OqxB3 358 2 0.01

Aminoglycoside 2′-N-acetyltransferase 9,723 5 0.00

DNA-binding response regulator MtrA 9,854 2 0.00

Putative acetyltransferase 5,232 1 0.00

Quinolone resistance protein NorB 213 0 0.00

Only AMR proteins that appeared inmore than 100 genomes were considered; and only AMR proteins that occurred in conjugative genomes with a probability ≥ 0.98 or ≤ 0.15 are listed in
this table. Full data available in the Supplementary Table S3. *Full protein name: 16S rRNA (guanine(1405)-N(7))-methyltransferase.
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in conjugative versus non-conjugative genomes (Table 4). From

the complete list of 286 AMR protein names, 220 were found

more often in conjugative genomes; three were found with equal

probability in conjugative and non-conjugative genomes; and

63 were found more often in genomes that did not contain any

conjugation proteins. Given that the proportion of conjugative

genomes in our database was 51%, these results suggest that AMR

genes are disproportionately represented within conjugative

genomes.

The above analysis does not distinguish between different

types of conjugation features, and also treats AMR proteins as

independent features. However, the data in Figure 2 demonstrate

that many of the conjugation features defined in Table 1 often co-

occur in the same genome, as do some of the AMR proteins. To

gain insight into these correlations, and to identify groups of

AMR proteins associated with different conjugation families, we

performed a genomic co-occurrence analysis across all

conjugation features for the 138 AMR proteins found in

conjugative genomes with a frequency of at least 5 times

compared to identification in non-conjugative genomes

(i.e., these AMR proteins were highly represented in

conjugative genomes, Figure 4). The results of this analysis

demonstrated that some conjugation features frequently co-

occurred within genomes with both other conjugation features

as well as multiple AMR proteins. For example, IPR005094 co-

occurred with the highest diversity of AMR protein names (N =

139, see Supplementary Table S2). Many co-occurrence patterns

reflected known biological associations. For example, the

Tn916 conjugation feature co-occurred most frequently with

tetracycline ribosomal protection protein TetM, a genomic

association discovered over 3 decades ago (Su et al., 1992).

While TetM seemed to co-occur with a few select conjugation

features (such as Tn916), other AMR protein names co-occurred

with many conjugation features. For example, many of the AMR

TABLE 5 Associations between phenotypic AMR and representation of conjugative versus non-conjugative genomes.

Antibiotic Number of
Resistant Genomes

Number of Resistant
Conjugative Genomes

Expected Number of Resistant
Conjugative Genomes*

Observed Proportion
Conjugative Genomes

doripenem 215 207 86 ± 7 0.96

cefepime 272 259 108 ± 8 0.95

ampicillin-sulbactam 433 402 173 ± 10 0.93

imipenem 429 396 171 ± 11 0.92

piperacillin-
tazobactam

280 258 112 ± 9 0.92

meropenem 402 367 161 ± 11 0.91

trimethoprim-
sulfamethoxazole

868 775 348 ± 14 0.89

ertapenem 222 197 89 ± 8 0.89

levofloxacin 741 644 297 ± 14 0.87

gentamicin 813 706 325 ± 13 0.87

ciprofloxacin 915 794 367 ± 14 0.87

amoxicillin-clavulanic
acid

277 240 111 ± 8 0.87

ceftriaxone 984 849 394 ± 16 0.86

tetracycline 700 603 281 ± 12 0.86

ceftazidime 852 731 342 ± 14 0.86

cefotaxime 889 758 355 ± 15 0.85

tobramycin 674 574 270 ± 12 0.85

ampicillin 1042 852 418 ± 16 0.82

amikacin 383 313 154 ± 10 0.82

aztreonam 989 805 397 ± 15 0.81

cefazolin 1002 813 402 ± 16 0.81

cefoxitin 757 608 304 ± 15 0.8

nitrofurantoin 713 559 287 ± 12 0.78

cefotetan 124 95 49 ± 6 0.77

*Only drug compounds with 100 or more non-redundant resistant genomemeasurements and >76% representation in conjugative genomes are listed. The expected number of conjugative

genomes was estimated based on a bootstrapped random selection process with 100 trials (null hypothesis), using the number of assays and the actual fraction of genomes with conjugative

features (̃51%).
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names associated with extended-spectrum beta-lactam and

carbapenem resistance (e.g., beta-lactamases Toho-1, OXA-1,

OXa-2, OXA-10, SHV-2, and KPC) co-occured with the majority

of evaluated conjugation features, which may provide partial

explanation for the observed rapid expansion of these important

AMR genes within Enterobacteriaceae (Logan and Weinstein,

2017). Similarly, the recently widely-publicized mcr-1 protein co-

occurred with multiple conjugation features, which both

strengthens and expands upon recent findings that this AMR

gene has been mobilized on numerous plasmid types (Wang

et al., 2018). Co-occurrence data such as those provided in

Figure 4 may represent a new and sustainable (i.e., easily

updated) source of information regarding the potential for

new and emerging AMR genes to expand within and across

bacterial populations via HGT. This information, in turn, could

help to prioritize and focus public health and human clinical

decision-making regarding AMR.

Conversely, 29 AMR proteins occurred at least 5x more

frequently in non-conjugative genomes compared to conjugative

genomes (Supplementary Figure S1). Of note is the observation that

no beta-lactam AMR protein names occur in this list of 29 AMR

names, which contrasts starkly to the preponderance of beta-lactam-

associated AMR names in Figure 4, again suggesting that beta-

lactam resistance is tightly coupled with conjugative machinery, and

that conjugation-mediated exchange is the primary evolutionary

driver of beta-lactam resistance. By comparison, severalmechanisms

of multi-drug resistance (MDR) are contained within the list of

29 AMR proteins observed more frequently in non-conjugative

versus conjugative genomes, i.e., AcrB, AcrE, OqxB7, mdtA, mdtE,

mdtH, and MexB. These mechanisms of MDR tend to be multi-

function, i.e., the proteins confer multiple functional benefits to

bacteria, in addition to AMR. Together, the results of Figure 4 and

Supplementary Figure S1 suggest that proteins with more specific

AMR functions tend to be disproportionately represented amongst

conjugative genomes, while more generalist proteins tend to be

disproportionately represented within non-conjugative genomes.

One hypothesis for this observation is that the fitness cost-benefit

dynamics differ for generalist versus specialist genes, such that

specialized genes are more likely to transiently yet rapidly spread

within bacterial populations via the so-called ‘accessory genome’

(which includes conjugation-mediated exchange), whereas

generalist genes are more likely to be maintained permanently

within bacterial genomes, and thus are less likely to be identified

as conjugation-associated cargo.

2.5 Phenotypic AMR and association with
conjugative genomes

Given our hypothesis that conjugation-mediated spread of

specialized AMR genes may be promoted by more specific

evolutionary pressures such as antimicrobial drug exposures,

we hypothesized that this signature of selective pressure may

also manifest in the phenotypic properties of conjugative versus

non-conjugative genomes. To evaluate this, we queried the NCBI

BioSample assay metadata in our relational database, to identify

isolates that had been subjected to phenotypic antibiotic

susceptibility testing (AST) to known antibiotic compounds.

For the 186,887 highest quality genomes, the NCBI assay

metadata contained 15,286 phenotypically-confirmed resistant

genome-compound AST results, representing 13,076 tests for

conjugative genomes and 2,210 tests for non-conjugative

genomes. Altogether, 1,242 genomes were used in these tests,

of which 1,023 were conjugative genomes and 219 were non-

conjugative genomes. For each antibiotic compound listed in the

AST results, we computed the number of phenotypically resistant

isolates with conjugative-vs. non-conjugative genomes.

The results of this analysis revealed that phenotypic

resistance occurred in conjugative genomes with

probability >80%, regardless of compound being tested

(Table 5 and Supplementary Table S3). As with the

disproportionate representation of AMR proteins within

conjugative genomes, the phenotypic AMR data suggest that

microbial AMR dynamics are driven largely by conjugation-

mediated processes. However, it is also important to note that

NCBI phenotypic assay data is likely biased due to the

motivations for clinicians and researchers to submit isolates

for phenotypic testing. Therefore, to test for SRA sampling

bias with respect to these compounds, we also measured the

phenotypically-resistant fraction expected for randomly selected

genomes, based on the number of genomes tested per

compound in Table 5 and the number of conjugative and

non-conjugative genomes across the entire database. This

null hypothesis was tested by running 100 bootstrapped trials

for each compound (Table 3). The observed average probability

that phenotypic AMR was expressed by an isolate with a

conjugative genome was 0.85 ± 0.05 independent of antibiotic

compound, i.e., weighted by total genomes tested per compound

(Table 5). In a random process, the probability would be

expected to be near 51% given the fraction of all genomes

with conjugation features. These results further support the

importance of conjugation in the microbial ecology and

epidemiology of both genotypic and phenotypic AMR.

2.6 Genome clustering by conjugative
feature profile

The specific proteins transferred between bacteria are known

to vary by conjugation feature, for example as demonstrated by

the co-occurrence patterns of conjugation features and AMR

proteins within genomes (Figure 4 and Supplementary Figure

S1). To demonstrate the structuring of bacterial populations by

conjugation-cargo co-occurrence patterns, we generated the

same co-occurrence matrix for all cargo proteins and all

conjugative features within genomes that contained a high
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frequency of cargo proteins (Figure 5). We then calculated the

genome-genome Euclidean distance for all genomes in the co-

occurrence matrix, using a vector of normalized conjugation

features (see Methods, Supplementary Figure S2). The results

demonstrate clusters of genomes with similar conjugative

features. While these clusters often reflect classical bacterial

taxonomic structure, there are also instances of discordance

between the clustering based on conjugation profile and

traditional grouping based on taxonomy. These results reflect

the evolutionary dynamics of bacterial populations, and suggest

that the relative importance of vertical versus horizontal gene

transfer events is highly variable. Such variability in the

importance of HGT events has been previously reported,

including differences in plasmid versus ICE-mediated

exchange and interactions with bacterial host range (Cury

et al., 2018). This finding has far-reaching and complex

implications for applications that rely on a measure of

phylogenetic relatedness, i.e., outbreak detection and source

attribution. In some cases the use of the core genome may be

sufficient to accurately reflect bacterial phylogenetic relatedness;

while in others, the information in the core genome may

obfuscate the true relationships between bacterial isolates. As

WGS data become more widely used, these complexities must be

considered, and in some cases, incorporated into phylogenetic

analysis workflows.

The relational database underlying this work and the ggMOB

tool is a necessary (yet not sufficient) component of improved

interpretation and use of WGS data. We note that, in principle,

one can use the co-occurrence matrix and vectorization

procedure on genomic properties other than conjugative

features. This provides a flexible and customizable approach

for defining a different set of genomes of interest within the

mobilome, which can then be used to (re)classify organisms not

by name, but by genome-genome distance in a space of

mobilization features. This capability could represent a

powerful tool for improving our understanding of bacterial

evolution while also informing the next generation of applied

WGS computational and statistical pipelines.

3 Discussion

The public availability of large scale genomic data makes it

possible to apply cloud computing technology and big data

techniques to study important phenomena in molecular and

microbiology. Curating these data in a relational database with

biologically structured entity relations (i.e., linking genomes,

genes, proteins, domains, and metadata) provides a powerful

method with which to ask biological questions about the data.

We leveraged this approach in the current study of cargo and

conjugation, which is an essential mechanism by which bacteria

acquire new phenotypes, transmit molecular functions, and

adapt to stress. Furthermore, these events are critical for

understanding bacterial evolution and phylogeny (Guglielmini

et al., 2011; Abby et al., 2012; Bellanger et al., 2014). Our work not

only sheds light on conjugation-mediated cargo transfers

between and within genera, but also demonstrates the ability

of mining and analyzing large datasets in improving our

understanding of bacterial evolutionary dynamics. The

network of putative genus-genus conjugation features and

candidate cargo genes can be dynamically visualized using the

ggMOB tool, which supports hypothesis generation and testing

related to intra- and inter-genus conjugation dynamics.

In our analysis we identified sets of proteins with the

strongest evidence as conjugation and cargo proteins. This

was accomplished by selecting only those proteins that

exhibited both 100% sequence identity and co-occurrence in

pairs of genomes containing identical conjugation-associated

sequences. With this strict selection process, the putative

cargo proteins exhibited a high degree of spatial correlation

within assembled contigs (i.e., they were highly adjacent to

each other, as well as to the conjugation protein itself). Other

proteins in these genomes may also have been transferred (or are

transferable) by bacterial conjugation, but they did not meet our

strict selection criteria. Considering only strictly-selected

candidate cargo proteins, we were able to profile the

frequency of conjugation-mediated protein exchange within

and between genera.

Our results suggest that conjugation-mediated exchange is

not uncommon, affirming prior studies (Guglielmini et al., 2011;

Bellanger et al., 2014). Conjugation-related proteins were

observable in 51% of bacterial genomes and in 631 of

1,345 genera (approximately 47%). Frequency of intra- and

inter-genus conjugation-mediated exchange varied significantly

depending on the taxa involved, suggesting that taxonomy

greatly influences genetic exchange of, e.g., AMR or

pathogenicity proteins (Delavat et al., 2017). By quantifying

this across a large database of high-quality WGS data, we

measured the “exchange likelihood” between different genera.

These likelihoods can be visualized dynamically in the ggMOB

tool, which reveals distinct clusters of genera that share

conjugative features with exact sequence match. This suggests

that the likelihood of protein transfer varies substantially by

genus pair, and that the bacterial composition within a given

environment is an important consideration when attempting to

evaluate mobilization potential within a microbial community

(Lopatkin and Collin, 2020; Neil and Allard, 2021).

While we have conducted this analysis for a specific set of

conjugation features (Table 1), the analytic approach can be

applied to any MGE(s) and cargo protein(s) of interest. As such,

our overall approach represents a method for obtaining a long-

range evolutionary view of transfer likelihood between diverse

bacterial taxa, including pathogens and commensal bacteria

(Guglielmini et al., 2011). These baseline exchange likelihoods

are critical parameters for risk analysis at the microbial

community level, including for applications such as
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personalized microbiome medicine, and microbiome-centric

surveillance.

Bacterial taxon is not the only significant driver of exchange

likelihood; we also observed that putative, successful transfer

events were more likely to involve cargo proteins that infer fitness

advantage to the involved bacterial populations, such as AMR.

While any gene can, in principle, be transmitted as a cargo gene

in conjugative exchange, only a subset of transferred proteins will

increase the fitness of the receiving organism. The likelihood of

observing successful transfer depends on a large number of

factors including the environment, the existing proteins in the

recipient chromosome, the cargo proteins themselves, and the

survival probability of the organism (Cohen et al., 2010).

Conjugation-mediated protein transfer that improves fitness

may increase survival probability. Therefore, chromosomal

arrangements that group fitness-conferring cargo proteins near

the conjugation machinery will be observed more frequently than

those arrangements that involve neutral or disadvantageous

proteins. Conversely, very common proteins that aid in stress

response may be less likely to be transferred as cargo, since the

relative fitness advantage is diminished for proteins that are

already likely to be present within a bacterium (i.e., proteins that

confer redundant function). The particular stressor—as well as

the specific advantageous proteins of interest—depend on

phenotype of interest. This view is exemplified by the data in

Table 4 which shows that rare AMR proteins are more likely to be

found as cargo in genomes that also contain conjugative proteins,

as compared to genomes that do not. Conversely, common AMR

proteins are less likely to be found in genomes that contain

conjugative machinery. One might hypothesize that, with

chromosomal rearrangement, nature effects a real world

experiment to dynamically optimize cargo protein

collections—thereby spreading rare (but useful) proteins and

gene combinations over time.

The particular cargo proteins shared between chromosomes

varied by conjugation feature, as demonstrated by the AMR

proteins analyzed in Figures 1, 4. Considering all conjugation

features used in this study, our results suggest that conjugation

dynamics are important in structuring genomic content, and

thus driving phylogenetic evolution. Based on Figure 5, it seems

that sometimes these evolutionary conjugation dynamics can

sometimes overpower other taxonomic drivers, such that genus-

level genomes do not always cluster together. To demonstrate

this conjugation-driven phylogeny, we used the data in Figure 5

to generate Figure 2, which represents the distance between all

pairs of genomes based on Euclidean distance between their

representations as normalized conjugation feature vectors. The

resulting hierarchical clustering shows that the dominant

conjugation features are represented in genomes across

different genera and, conversely, that individual genera

include genomes with differing conjugation profiles. This

abrogation of genus-level taxonomy due to conjugation-

related genomic content is an inevitable consequence of the

inter-genus transfers visualized in ggMOB. Given the reality

of conjugative exchange, there is no reason to expect that

taxonomic classification by organism name will always predict

the composition of conjugation-associated cargo proteins.

However, by selecting genomes based on a particular phenotype

of interest, it is possible to classify organisms and genome-genome

distances based on a feature space defined by conjugation (or other

mobilization) proteins, as in Figure 2. Given the ubiquity and

diversity of conjugation and other types of HGT (Guglielmini

et al., 2011), these types of genome clustering techniques may

provide crucial information about bacterial evolution that is not

containedwithin traditional phylogenies. In this regard, the ability to

FIGURE 1
Individual genomes typically contained more than one
conjugative feature (Table 1), and often contained more than one
protein per feature. (A)Histogram (log frequency) of the number of
conjugative features per genome, and (B) Histogram (log
frequency) of the number of conjugative proteins per genome for
all 106,433 genomes containing at least one conjugative feature.
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filter the ggMOB data based on conjugation features of interest may

particularly useful.

4 Materials and methods

4.1 Creation of relational database

Here we briefly describe the process used to create the

relational database that underlies ggMOB; further details can

be found at (Seabolt et al., 2020). First, we downloaded whole

genome sequences from NCBI’s Reference Sequence Database

(RefSeq), which we then filtered to only obtain genomes that

were identified as being of bacterial lineage, and as having an

assembly level of “Complete Genome”. We added to this set of

genomes non-assembled sequence data from NCBI’s Short

Read Archive (SRA) by first downloading all datasets that had

the following criteria: (1) the data consisted of WGS data

generated from bacteria, as defined according to their

taxonomic lineage; (2) the data were Illumina short-read

sequence data from DNA; and (3) the sequence data were

paired-end. Long-read and transcriptomic data were not

considered. We note that we downloadeded all the SRA

data in FASTQ format using the SRA toolkit (Sugawara

and Shumway, 2010), and assembled them into contigs

using SPAdes (Bankevich et al., 2012). We discarded any

genome assemblies that contained more than 150 contigs

(of size >500 bp) or had an N50 of less than 100 kbp. We

note that only 48% of bacterial genomes met the

aforementioned curation thresholds from the original

corpus of SRA datasets. Next, we eliminated any assembled

genomes in which a significant proportion of k-mers

originated from multiple genomes across different genera.

This removed another 13,044 genomes from consideration.

This last step ensured all the genomes used for analysis were

from a pure single bacterial isolate with valid genus-level

classification, hence minimizing the probability of

contamination. We obtained a total of 159,628 genome

assemblies after filtering for all the above criteria, and a

total of 186,887 genomes when including the genome

assemblies from RefSeq.

Next, we annotated all the genomes using Prokka 1.12

(Prokka, 2014), resulting in the collation of the genome, gene,

and protein data entities into CSV files. After annotation, we

determined the protein domains using InterProScan

5.28–67.0 (Quevillon et al., 2005) with all available analyses

provided by InterProScan (16). This resulted in 16 JSON files

that were then parsed to create a set of CSV files. The

annotation process yielded a total of 66,945,714 unique

gene sequences; 51,362,178 unique protein sequences; and

138,327,556 unique protein domains along with related

functional annotations.

Using the curated data, we created a relational database

using IBM’s DB2 system, which contained the following five

different entity types: genomes, genes, proteins, protein

domains, and functional annotations. These entities were

determined by the above data curation, assembly and

annotation steps; each entity in the database was stored

using the MD5 hash of the sequence itself to create a

unique identifier. Thus, we can quickly query for an entity

within the database using the unique identifiers as a key. We

stored the relations between entities as tables in the relational

database, e.g., the genes corresponding to a particular genome

in a table. We note this saves storage because unique

sequences are stored only once in their respective tables

and the tables point to all the parent entities in which they

are found. Thus, while database construction required

1468 CPUs, 6TB RAM, and 160 TB of hard drive space, the

final relational database scales efficiently with the addition of

new sequences (Seabolt et al., 2020).

4.2 Creation of ggMOB

After curation and annotation of the data, we identified all

candidate conjugative and cargo proteins in order to create

ggMOB. In particular, we used both the primary literature

and the InterProScan coding system to generate a list of

conjugative features for ggMOB. This led us to consider the

following 12 InterProScan codes:

1. IPR005094 describes relaxases and mobilisation proteins, as

exemplified by MobA/VirD2 (Pansegrau et al., 1993; Byrd

and Matson, 1997; Quevillon et al., 2005).

2. IPR011119 represents a domain found in Proteobacteria

annotated as helicase, conjugative relaxase or nickase

(Street et al., 2003; Quevillon et al., 2005).

3. IPR014059 codes for a domain in the N-terminal region of

a relaxase-helicase (TrwC) that acts in plasmid

R388 conjugation. It has been associated with both

DNA cleavage and strand transfer activities, and

members of this family are frequently found in

genomic proximity to conjugative proteins thought to

indicate the presence of integrated plasmids when

identified in bacterial chromosomes (Quevillon et al.,

2005; Boer et al., 2006).

4. IPR014129 represents proteins in the relaxosome complex,

exemplified by TraI, which mediates the single-strand

nicking and ATP-dependent unwinding of the plasmid

molecule via two separate domains in the protein

(Matson and Ragonese, 2005; Quevillon et al., 2005).

5. IPR014862 represents a conserved domain found in the

relaxosome complex, as exemplified by TrwC (Quevillon

et al., 2005; Boer et al., 2006).
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6. IPR021300 represents a conserved domain observed in ICE

elements in the protein family PFL_4695, and originally

identified in Pseudomonas fluorescens Pf-5 (Quevillon

et al., 2005; Mavrodi et al., 2009).

7. IPR022303 describes a family of conjugative transfer

ATPases representing predicted ATP-binding proteins

associated with DNA conjugative transfer. They are found

both in plasmids and bacterial chromosomal regions that

appear to derive from integrative elements such as

conjugative transposons.

8. IPR025955 describes a family of TraC-related proteins

observed in Proteobacteria. TraC is a cytoplasmic,

membrane protein encoded by the F transfer region of

conjugative plasmids, and is required for the assembly of

the F pilus structure, which creates and maintains contact

between the donor and recipient cells during conjugation.

The family includes predicted ATPases associated with DNA

conjugative transfer (Schandel et al., 1992; Quevillon et al.,

2005).

9. IPR022391 represents the N-terminal domain of proteins

associated with conjugative relaxases in the PFGI-1 class,

which includes TraI putative relaxases required for ICE

function. While these relaxases are similar in function to

TraI relaxases of the F plasmid, they have no sequence

homology (Quevillon et al., 2005).

10. IPR011952 represents CD-NTase-associated protein 3, a

group of proteins that function as part of CBASS (cyclic

oligonucleotide-based antiphage signaling system), which

provides immunity against bacteriophages (Millman et al.,

2020).

11. IPR014136 encompasses TraA, a Ti-type conjugative

transfer relaxase that likely nicks the OriT site and

unwinds the coiled plasmid prior to conjugative transfer

(similar to TraI(F) in this respect) (Harris et al., 1999).

12. IPR020369 represents mobilization protein B (MobB),

which is thought to play a role in conjugative exchange

by presenting MobA and its covalently-linked plasmid

DNA to the conjugative pore for subsequent export

(Meyer, 2011).

We supplemented the IPR features with additional

conjugative features that provide essential functions in the

conjugation process, including conjugative relaxases, nickases,

helicases, and other mobilisation proteins (Schandel et al.,

1992; Pansegrau et al., 1993; Byrd and Matson, 1997; Boer

et al., 2006) (Table 1). These conjugative features contain

substantial sequence diversity, (Frost et al., 2005; Wozniak

and Waldor, 2010; Perry and Wright, 2013; Johnson and

Grossman, 2015; Singer et al., 2016), but also represent

conserved domains involved in the machinery required for

FIGURE 2
Heatmap showing the relative genomic positions of conjugative features and putative cargo proteins for the 2,000 genomes with the greatest
number of cargo proteins. Conjugative features are represented as color pixels based on the colors shown in Table 1, with yellow representing
proteins assigned specific IPR codes and red representing protein families from the literature. Cargo proteins are shown in grey and other
chromosomal DNA in white. Each genome is bit shifted to the left until the first conjugative feature is centered in the figure. Most genomes
contained more than one conjugative protein (all contain at least one). The inset highlights the genomes at indices 1450–1550 in order to expand a
subset of the data.
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conjugative transfer. Using standard SQL queries, we obtained

a list of the unique identifiers that have one or more of the

features described above, resulting in a list of 28,042 candidate

conjugation proteins. From this list, we removed those that

appeared exactly in only a single genome, which further

reduced the list of potential conjugation proteins to

15,398 across 95,781 genomes. We refer to this resulting set

of genomes as conjugative genomes because they contain

putative conjugation features (Supplementary Table S4). We

note that these genomes represent 51% of all genomes in the

relational database.

Next, we performed SQL queries in order to identify proteins

most likely to be cargo based on evidence of conjugative transfer. To

minimizemisclassification of proteins as cargo, we applied two rules:

(1) the proteins had to be present in at least two genomes with the

same conjugative protein; and (2) they could not be present in any

non-conjugative genome. To accomplish the query, we first queried

the database for all proteins in the 95,781 conjugative genomes,

which produced a list of 387,682,038 distinct < conjugative genome

accession number, protein > tuples. In many cases a unique

sequence was observed in more than one genome, and therefore,

in total there were 21,207,794 distinct protein sequences in the set of

conjugative genomes. Next, we filtered this list in order to identify

the set of proteins that appeared in two or more conjugative

genomes. To further reduce false positive identification of

transfer by conjugation (vs. being vertically transferred), we

discarded any protein that appeared in any of the 99,052 non-

conjugative genomes.With this strict selection process, we identified

11,276,651 distinct sequences that we refer to as cargo proteins,

i.e., proteins with the greatest evidence of conjugative transfer. Lastly,

we tabulated these results to produce a list of triples of the form <
cargo protein, conjugative genome A, conjugative genome B>which

describe genome A and genome B contained at least one identical

conjugative protein sequence, yielding a total of

4,938,737,476 putative transfers. We used this file as input to a

custom python script that identifies all intra- and inter-genera cargo

protein transfers for each protein by comparing all pairs of genomes

in order to identify the intersection of conjugative proteins of each

pair of genomes, and the cargo proteins (if any) in this intersection.

The output of this script was used to create the ggMOB network,

which contains a node for each genus, and an edge between any pair

of nodes in which the value of co-occurrence of <conjugative
protein, cargo protein> is non-empty (see https://github.com/

Ruiz-HCI-Lab/ggMOB for source files and code).

4.3 Additional analyses

4.3.1 Conjugation and cargo gene proximity
To characterize the genomic proximity of conjugative and

cargo genes within the conjugative genome pairs, we used our

compiled list of genera, genomes, conjugative and cargo

proteins, along with Prokka’s accession index, which

indicates the position of a gene or protein sequence within

the assembled sequences. While this approach was limited by

the fact that the order of assembled sequences is unknown,

the Prokka index does indicate position of annotated

sequences within each assembled sequence; this

information was used in a visual display of genomic

distance (Figure 2).

4.3.2 Characterizing AMR genes
We identified all AMR proteins by querying our

relational database with all sequences in the MEGARes

database (Lakin et al., 2016). To obtain consistent

annotations, we annotated the sequences in MEGARes in

the same format as was used to annotate the set of all

proteins in the database. We note that we were able to

maintain high confidence that these annotations represent

AMR proteins because the annotations were derived by exact

sequence matching. Next, we extracted the set of cargo

proteins with (self-consistent) names that matched any

MEGARes AMR protein name. These data were then used

to compute the frequency of observing each AMR gene in

genomes that contained and did not contain conjugative

features.

4.3.3 NCBI antibiotic susceptibility testing
BioSample data

To analyze associations between phenotypic AMR and

genomic conjugation features, we retrieved metadata for each

NCBI accession that contained antimicrobial susceptibility

testing that contained AST data, which include genomic

accession number for each isolate, the antibiotic

compound(s) against which it was tested, the AST type,

and the phenotypic outcome (resistant, susceptible, or

intermediate). We only considered those isolates with a

resistant phenotypic outcome to be resistant. By linking the

BioSample accession with the SRA accessions in our relational

database, we were able to identify genomes for which

corresponding AST data were available. These genomes

were used in our analysis of phenotyic AMR and

conjugative features.

4.3.4 Classification of plasmid and conjugation
proteins

We note that many of the InterPro codes listed in Table 1

contain conjugative machinery found in both plasmids and

ICEs. Since these two groups of MGEs exhibit unique

microbial ecological and epidemiological dynamics

regarding AMR, we attempted to further annotate

conjugative proteins identified within our set of genomes.

To accomplish this, we first queried NCBI for bacterial

plasmids. All of these assembled bacterial plasmids were
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downloaded from NCBI and annotated via our Prokka and

InterProScan pipelines. The annotated plasmid associated

proteins were then placed in a database table. The

MD5 hash was used as the primary key for entries in this

table, as was true for every sequence entity in the FGP

database. Determining whether a protein had been

observed on a plasmid in any of the reference genomes was

then accomplished by querying for the primary (i.e., FGP) key

of each protein within the table of plasmid-associated

proteins. If the primary key existed in both tables, we

considered that protein to be a plasmid-associated protein.

These data were used in the analyses shown in Figure 3.

4.3.5 Tabulation of data
Conjugative genomes were tabulated by genus as shown in

Table 2. Observed conjugative features from Table 1 were

tabulated by genome for the analysis shown in Figures 1, 5.

Similarly, proteins assigned AMR-associated annotations were

tabulated by number of conjugative and non-conjugative

genomes, and the fraction of unique sequences observed in

plasmids was tabulated as well (See Figure 4).

4.3.6 Hierarchical clustering and co-occurrence
Hierarchical clustering was used to characterize the co-

occurrence of proteins or genomes by conjugation feature

(Figures 1, 4, 5. The co-occurrence matrix was generated

using the Seaborn clustermap algorithm, which performs

single linkage clustering to generate heatmaps and

dendrograms (Waskom, 2015). The vector of features

used to generate the heatmap shown in Figure 2 was the

vector of conjugation features for each genome, which in

order to compute the (Euclidean) distance between each

genome. Again, Seaborn clustermap was used for

hierarchical clustering and visualization.

FIGURE 3
AMR Protein Detection in Plasmids versus Conjugative Genomes. 2D histogram showing the probability that AMR proteins were found in
conjugative genomes (x-axis) versus the fraction of AMR proteins observed on plasmids (y-axis). Independent of presence on conjugative genomes,
5%–10% of AMR proteins were observed on plasmids, whereas the majority of AMR proteins were found in conjugative genomes.
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FIGURE 4
Co-occurrence of AMR proteins with conjugative features, for the 138 AMR proteins observed in conjugative genomes with a frequency greater
than 5x the frequency of observation in non-conjugative genomes. Of these AMR proteins, 43 are only observed in conjugative genomes.
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SUPPLEMENTARY FIGURE S1

Co-occurrence of AMR proteins with conjugative features.Co-
occurrence of AMR proteins with conjugative features for the 29 AMR
proteins observed in non-conjugative genomes with a frequency at
least 5x the frequency of observation in conjugative genomes..

SUPPLEMENTARY FIGURE S2

Heatmap of Genome-Genome Distances Based on Conjugation Feature
Profiles. Genome-genome Euclidean distance between vectors of
conjugation features for the 6500 genomes used in 5. For visualization
purposes, 1 in 75 labels were rendered on each axis. The figure shows that
different sets of genomes cluster based on different co-occurring
conjugation features..

FIGURE 5
Genome-IPR Co-Occurence Map. Co-occurrence of
conjugation features by genome, for the 6,000 genomes with the
highest cargo protein fraction and the 500 genomes with the
rarest conjugation features (see text). Co-occurrence of
particular conjugation features does vary by taxonomic group.
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