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ABSTRACT
The future of smart environments is likely to involve both passive
and active interactions on the part of users. Depending on what sen-
sors are available in the space, users may make use of multimodal
interaction modalities such as hand gestures or voice commands.
There is a shortage of robust yet controlled multimodal interaction
datasets for smart environment applications. One application do-
main of interest based on current state-of-the-art is authentication
for sensitive or private tasks, such as banking and email. We present
a novel, large multimodal dataset for authentication interactions
in both gesture and voice, collected from 106 volunteers who each
performed 10 examples of each of a set of hand gesture and spo-
ken voice commands chosen from prior literature (10,600 gesture
samples and 13,780 voice samples). We present the data collection
method, raw data and common features extracted, and a case study
illustrating how this dataset could be useful to researchers. Our goal
is to provide a benchmark dataset for testing future multimodal
authentication solutions, enabling comparison across approaches.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Security and privacy → Usability
in security and privacy.
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1 INTRODUCTION
Mark Weiser’s famous vision for ubiquitous computing was that
computer technologies would be interconnected and integrate seam-
lessly with the environment, “fading” into the background for most
users [58]. Researchers have taken this vision to imply that so-called
natural communication modalities such as touch, voice, vision, and
motion will be useful for multimodal interaction in these ubiquitous
“smart environments” [2, 42]. Many of these futuristic visions imply
little to no effort on the part of the user to consciously “interact”
with the system, but instead that the system will be able to infer
user intent from natural behaviors seamlessly in any context. In
reality, based on current trends such as smart home assistants, it
seems likely that the future of smart environments is likely to in-
volve both passive and active interactions on the part of users in the
space. Which modalities are used in a space by users will depend
both on what sensors are available in the space, and how users feel
about the comfort, usability, trustworthiness, and/or robustness of
various multimodal interaction modalities.

Research into designing and developing this vision of future
smart environments requires access to interaction datasets that re-
flect the range of potential users and variability in their interaction
behaviors. Small datasets with few users can result in an algorithm
that performs well on the training data, but does not generalize
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to the larger population well due to bias (underfitting) and vari-
ance (overfitting) [6]. However, there is a shortage of robust yet
controlled multimodal interaction datasets for smart environment
applications that can support these goals.

Context of the interaction is also a critical factor in which user
behavior is likely to change. One application domain of interest
based on current state-of-the-art is authentication for sensitive or
private tasks, such as banking and email. Smart home assistants
were slow to support any type of user authentication [13], which
could lead to security exploitations, accidental or purposeful. News
headlines have documented the problems with this model: news
anchors speaking commands on TV [7] or advertisements for cur-
rent technology [35] have been recognized by the devices, resulting
in unwanted purchases. Even these recently added authentication
features are limited in scope, requiring users to log in only once,
and emphasize passive authentication [13].

To support future research on natural interaction for smart en-
vironments, specifically for the context of user authentication, we
present a novel multimodal dataset in both gesture and voice, which
we call MMGatorAuth. We collected this dataset in a controlled
lab setting from 106 volunteers, who each performed 10 examples
of each of a set of hand gesture and spoken voice commands. We
chose the set of commands based on a review of prior literature
and a goal to span the range of input behaviors that may be en-
countered in a real-world authentication interaction. In total we
have 10,600 gesture samples and 13,780 voice samples. We used the
Kinect V2 sensor and a high-quality Blue Yeti microphone to record
our dataset, to create a high quality dataset using sensors likely to
be available in smart-home devices in the near future.

In this paper, we present the data collection method, raw data
and common features extracted, and a case study illustrating the
types of research questions this dataset can make possible to an-
swer. Our goal is to provide a benchmark dataset for testing future
multimodal authentication solutions, enabling comparison across
approaches. Our large, robust dataset, which provides two modali-
ties that have not been studied as frequently in the literature, can
also be useful for general purpose gesture and voice recognition
algorithm evaluations.

2 SELECTION OF DATASET COMMANDS
The gesture and voice commands chosen for this study were based
on a review of prior research in this space [14, 24, 44, 49, 51, 52, 60,
63]. A set of 10 gesture commands were chosen, and a set of 10 voice
commands plus 3 spoken English-language pangrams. We chose
to ask users to perform specific commands rather than proposing
their own natural command preferences in order to support the
systematic testing of gesture and speech recognition algorithms,
which requires a balanced sample of instances in each class to
succeed. The process of identifying and selecting the commands in
the dataset is detailed for each modality next.

2.1 Gestures
A review of past work revealed that three main types of gestures
have been used for authentication purposes: hand shape [52], mid-
air handwriting (aka, “air signature”) [52], and hand wave [24, 49,

Figure 1: Gesture types represented in the dataset; partici-
pants performed 10 examples of each gesture type. Gesture
types were chosen based on a review of prior related work.

63]. Takeuchi et al.’s [52] work on recognizing hand shapes sug-
gested gestures such as an index finger pointing up. Expanding on
this example, we also included three other handshapes common in
Western culture: thumbs up, thumbs down, and the okay sign, since
it is likely that such common gestures would be easily learned or
chosen independently by users. We also adopted four other gestures
from prior work by Rico and Brewster [44] that explored acceptable
body and device gestures. The hand distance, forearm touch, wrist
rotation (aka, “double flip” [45]), and clap gestures were all selected
due to usage in existing gesture-based interfaces [14, 51, 60] and
their potential for inclusion in future interfaces [44].

Each gesture is shown in Figure 1, from top to bottom and left
to right: index finger, thumbs up, thumbs down, ok sign, wave, air
signature, forearm touch, hand distance, clap, and wrist rotation.
Each gesture sample includes the user starting with their hands at
their sides, performing the gesture, holding it for a short length of
time, and then transitioning out of making the gesture by returning
their hands to their sides.

2.2 Phrases
We designed the phrase set for the users to speak so that it would
cover all 44 phonemes in the English language. This approach en-
ables the dataset to be used for both voice-based authentication
based on the recognition of the passphrase or utterance, and bio-
metric authentication based on audio features of the vocal sine
wave itself. We also reviewed common current use cases for smart
assistants like Google Home or Amazon Alexa. We created ten
phrases that spanned all 44 English phonemes, as well as a phone-
mic pangram in the form of a short story. A phonemic pangram is a
phrase that contains all possible phonemic sounds in the target lan-
guage [11]. The pangram was further subdivided into three phrases
to make it easier for participants to repeat the story correctly since
a mistake near the end of the story would otherwise necessitate
repeating the story in its entirety. These phrases and the three-part
pangram are listed in Table 1. These data can also be used in speech
recognition experiments.
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Table 1: List of phrases represented in the dataset; partici-
pants spoke 10 examples of each voice command and pan-
gram. Commands were chosen based on prior work.

Abbr Phrase
Chairs Alexa, order a thousand more chairs.
Credit Alexa, what is my credit score?
Message Alexa, play my new voice messages.
Mail Alexa, place a hold on my mail until March.
Photos Google, delete all photos of theaters.
Doctor Google, when is my next doctor’s appointment?
Bank Google, what is my bank balance?
Password Google, change my email password to “Missouri”.
Facebook Google, update my Facebook status to “I love milkshakes”.
Grade Google, what’s my grade for my computer vision class?

Story1 The beige hue on the waters of the large loch impressed all,
including the French queen.

Story2 She sighed before she heard that pure symphony again,
just as the young boy Arthur wanted.

Story3 Her eyes would wander across the open air, lost for hours.

3 METHOD
3.1 Participants
We collected data from 106 volunteers, 32 female, recruited from
graduate and undergraduate computer science courses at the Uni-
versity of Florida1. Participants were aged between 18 and 32 (M =
21.6, SD = 2.63). The majority of participants were right-handed; six
participants were left handed and five participants were ambidex-
trous. The majority (75.5%) of the participants had prior experience
with motion-based interaction devices (e.g., Kinect, LeapMotion),
98.1% of participants had prior experience with spoken-language
interaction devices (e.g., Amazon Alexa, Google Home, Microsoft
Cortana, Apple Siri), and 66% of participants reported English as
being their first language.

3.2 Procedure
Participants were compensated with 1 point of extra credit in their
respective class. Sessions lasted approximately 45 to 60 minutes. To
avoid fatigue effects, participants were randomly assigned to one
of four groups in order to counterbalance the order of each type
of task: half of the participants performed gestures first, while half
repeated the phrases first. The phrase subgroups were similarly
counterbalanced, with half of the participants repeating the story
before the command phrases, and vice versa.

3.2.1 Gesture Tasks. Participants were asked to perform the 10
gestures 10 times in a counterbalanced order determined by using a
Latin square, presented on a PowerPoint slide deck. The slides gave
brief descriptions of how to perform the gesture (e.g., “Thumbs up”)
but did not contain images in order to capture natural variances
in how participants performed the gesture. For the gesture tasks,
the participant stood directly in front of a Kinect V2 placed on a
desk and directly under a Kinect V2 suspended from the ceiling,

1At our university, it is common for students to be able to earn extra credit by partici-
pating in outside-of-class human subjects research studies. While not directly related
to the pedagogical goals of the class, it broadens computer science students’ exposure
to human-centered computing research methods and procedures.

facing down. To facilitate the use of RGB data to segment hands, the
participant wore colored nitrile gloves and removed any watches
or jewelry. Participants were instructed to stand with their arms
and hands in a neutral position at their side before performing each
gesture and to return to that position when they had completed
the gesture. Each gesture was recorded using both Kinects simulta-
neously by the researcher. Participants were instructed to perform
gestures consistently and were asked to repeat gestures whenever a
mistake was made; recordings of erroneous gestures were removed
from the database. Given the duration of the study, participants
were periodically asked if they needed to take a break.

3.2.2 Phrase Tasks. Participants were asked to repeat the 10 voice
commands in a counterbalanced order determined by using a Latin
square, as well as to repeat the pangram story in order 10 times. As
described above, half of the participants repeated the voice com-
mands before the pangram and vice versa. As with the gesture tasks,
the voice phrases were presented to the participants via a Power-
Point slide deck. Participants performed the phrase tasks while
seated in front of a Blue Yeti USB Microphone. Participants were
asked to repeat phrases whenever a mistake was made; recordings
of erroneous phrases were removed from the database. As in the
gesture tasks portion of the study, participants were periodically
asked if they needed to take a break to avoid fatigue effects.

3.3 Data Collection and Extraction
Two Kinect V2 sensors were used for data collection. One sensor
was placed approximately six feet in front of the participant (“bot-
tom Kinect”) and the other directly above facing downward (“top
Kinect”). The sensors have frame rates of 30 fps and an image frame
size of 424 × 512. Data from the top and bottom Kinects were col-
lected in Kinect’s native format, xef, which can be played back in
Kinect Studio as if the Kinect was recording a live-stream. How-
ever, for our purposes, the xef data was split into the following
components after it was collected: full raw video, audio, RGB video
(video without audio), depth data, Kinect skeleton data, and Kinect
depth skeleton data. The videos and RGB videos were recorded
at a resolution of 1,920 x 1,080 pixels at 30 fps. The depth data
contains the distance between the Kinect device and the objects in
front of the device, in millimeters for each pixel in the frame. The
Kinect skeleton data contains the x, y, z positional and rotational
information for each of 25 joints in the skeleton at each timestamp,
and the Kinect depth skeleton maps the Kinect skeleton to the
2D coordinates of the depth data. A total of 10,600 gestures were
recorded. Due to experimenter error in operating the recording
sensors, top Kinect recordings for 100 gestures (one session, P415)
were discarded.

The voice data was collected in a continuous audio stream which
was manually segmented at the boundaries of each utterance by
the researchers after the study. A total of 13,780 utterances were
recorded. However, due to experimenter error in operating the
recording sensors, 130 utterances (one session, P149) were discarded.
Voice data was saved in the Free Lossless Audio Codec (aka, FLAC),
which is a lossless, compressed format.
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Table 2: Characteristics of the MMGatorAuthor corpus we
collected in this study. Data is available for 𝑁 = 106 users in
both the gesture and voice modality.

Gesture Voice
No. Files (total) 147,000 13,650
No. Files per user 1,400 130
Media Length (total) (hh:mm:ss) 12:26:03 15:02:23
Media Length (average) per user 4.22 secs 3.95 secs

4 DATASET AND FEATURE EXTRACTION
Table 2 provides details of the dataset in terms of quantity of data
overall and per user. Next, we describe features extracted from each
stream, gesture and voice, which are also released with the dataset.

4.1 Gesture Feature Extraction
We extract three types of gesture features established in prior work.

Trajectory Features:The trajectory feature represents the draw-
ing path of the in-air gesture. It is obtained by tracking key-points
(fingertip or palm center) of the hand region from each image
frame. To obtain sufficient behavioral features, we calculate the
velocity and the acceleration from the 3D coordinates of the key-
point [28, 53], which leads to a 9-dimensional feature vector for
each frame. The dimension of the feature vector for each sample is
𝑁 × 9 where 𝑁 is the number of frames. The trajectory is scaled
within a 1 × 1 × 1 bounding box (x-, y-, and z-axis) and smoothed
using a Kalman filter [23] to reduce the error caused by sensor inter-
ference and correct jagged lines caused by quickly performed in-air
gestures. The difference of the raw trajectory and the smoothed
trajectory is shown in Figure 2. Figure 3 presents x-axis time series
of three “air signature” trajectories from two users.

Skeleton Features: The skeleton features are from the skeleton
of the hand, which is represented as the center axis of the segmented
hand region. The center axis is obtained by applying the Chamfer
distance [27]. Figure 4 shows the center axis (center of mass) of the
hand, which we segmented from the video frame, being tracked
over successive frames. From this figure, we can see differences in
how the same “Wave” gesture is performed between users.

Silhouette Features:We leveraged silhouette features [61] to
represent hand motion. Our approach considers the whole hand
object for motion feature extraction. We construct a 14-dimensional
feature vector, which includes time, 3D coordinates, eight direc-
tional distances, and two time-based distances, calculated for ev-
ery pixel from the segmented hand. Since the silhouette feature

Figure 2: Example of smoothing trajectory in the x-y, y-z,
and x-z planes. The red line is the raw tracked trajectory and
the blue line is the smoothed trajectory.

Figure 3: Examples of the trajectory feature from “air signa-
ture”. The blue and gray plots that have a similar shape are
trajectories from the same participant. The orange plot is a
trajectory from a different participant.

Figure 4: Gesture “Wave” from different users; the size and
range of waving are different as per the skeleton features.

is considered as a “bag of features” [41], we apply the covariance
metrics [57] for sparse feature selection (dimensional reduction).
Similar to the approach by Wu et al. [61], we add two additional
sub-tunnel silhouettes to potentially improve performance.

4.2 Voice Feature Extraction
We derive four voice-based features established in prior work.

Mel-frequency-cepstral-coefficients (MFCC):TheMFCC fea-
ture Mel-scales the received signal to mimic the human hearing
spectrum. A detailed explanation of MFCC was proposed by Davis
et al. in the 1980s [15]. As suggested by previous research [37],
we use 13 MFCC coefficients with 32 window lengths and a 16
ms window shift for speaker authentication, which leads to a 13-
dimensional feature vector for each voice sample.

Linear-predictive-coding (LPC): LPC is a method to model
the voice sample based on a linear combination of its past sam-
ples [16]. It is accurate in estimating voice parameters such as pitch,
energy, and formant [59] using low bit rates. We use 15 LPC orders
with 32 window lengths and a 16ms window shift, which lead to a
15-dimensional feature matrix for each voice sample.

Linear-predictive-cepstral-coefficients (LPCC): LPCC is de-
rived from LPC, which also represents vocal parameters but with
better performance and reliability [39] compared to LPC. We use 12
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LPCC coefficients with 32 window lengths and 16 ms window shift,
which lead to a 12-dimensional feature vector for each sample.

Perceptual-linear-prediction (PLP): PLP is an estimation of
the auditory spectrum based on the psychophysics of the human
hearing system and was first proposed by Hynek in 1989 [25].
The RASTA processing method [26] is usually applied with PLP
for channel effect removal. In our dataset, we use 12th-order PLP
features for feature representation.

5 CASE STUDY: USER AUTHENTICATION
USING VOICE FEATURES

To demonstrate the utility of our dataset for multimodal analysis,
we present baseline results of the voice-based features that we ex-
tracted for authentication. Voice-based features are widely used in
authentication and have demonstrated high discriminability, allow-
ing for use in a variety of authentication applications [36, 46]. We
analyze all voice features that we extracted: Mel-frequency-cepstral-
coefficients (MFCC), the linear-predictive-coding (LPC), the linear-
predictive-cepstral-coefficients (LPCC), and the perceptual-linear-
prediction (PLP) [15, 16, 25, 39]. The metrics we used for measuring
discriminability are the intra-class similarity, inter-class similarity,
equal error rate, and classification accuracy.

5.1 Experiment Methodology
We defined the interclass similarity as the similarity between fea-
tures extracted from samples collected from different individuals
while the intra-class similarity is defined as the similarity of features
extracted from samples collected from the same individual. Ideally,
for an authentication application, intra-class similarity should be
high and inter-class similarity should be low, to help discriminate
between different users’ gestures but accept natural variance within
a user’s gestures.

5.1.1 Similarity Measurement. Cross-correlation matrix: The
cross-correlation matrix is used to analyze feature similarity. We
present the averaged cross-correlation score (CCS) from the cross-
correlation matrix for similarity measurement. The intraclass simi-
larity is obtained from sample-to-sample correlation by the same
participant performing the same voice command, while the inter-
class similarity is obtained from user-to-user correlation when
performing the same voice command. The cross-correlation score
is between 0 to 1. In general, two features have good correlation if
the cross-correlation score is higher than 0.75 [10].

5.1.2 Matching and Evaluation. Equal error rate (EER): False ac-
ceptances and false rejections are two types of errors that occur in
a biometric classification system. The false acceptance rate (FAR)
indicates the likelihood of a system incorrectly accepting an unau-
thorized attempt, and the false rejection rate (FRR) indicates the
likelihood of a system incorrectly rejecting an authorized attempt.
The EER is defined as the value when the FAR equals the FRR.
Typically, an accurate biometric system will have a low EER value.
In this work, we calculate EER for each user based on dynamic
time warping (DTW) score, which is a well-known algorithm for
measuring the similarity between two temporal sequences (e.g.,
time series data with different lengths) [4].

Classification accuracy: The accuracy is obtained by a trained
Gaussian mixture model (GMM). GMM is a statistical model that is
commonly used in voice/speaker recognition research and applica-
tions [64], since it can efficiently and accurately represent feature
distributions for a biometric system.

5.2 Experiment Results
We present the cross-correlation score (CCS) to represent the intra-
class and the inter-class similarity in Table 3. This analysis explores
if the features possess the discriminability required for use in au-
thentication applications. The EER and the classification accuracy is
presented to evaluate the performance of an authentication system
based on voice features. The EER is calculated based on the DTW
scores that are shown in Table 4. The classification accuracy is ob-
tained by averaging the accuracy from 10,600 speaker recognition
experiments for the voice features and results are shown in Table 5.

Observations from the results are as follows:
1) According to the correlation score from Table 3, the highest

intra-class similarity of voice features is 0.930. The lowest inter-
class similarity of the voice features is 0.085.

2) Voice features achieve an EER of 11.90% at worst using LPCC
features. The best performing voice feature is for the phrase “Story3”
using MFCC features.

This case study shows that our dataset can provide similar per-
formance on speaker recognition with voice features as has been
demonstrated in previous literature [22, 56], thus validating the
quality of our dataset. The general utility of our dataset to other
researchers beyond what has been shown in prior work is the ad-
ditional modality of gesture interaction, and the ability to explore
both voice and gesture modalities together, in authentication appli-
cations and beyond.

6 RELATEDWORK
We motivate the need for MMGatorAuth based on prior work.

6.1 Need for Gesture and Voice Datasets
There is a long history, especially in the Multimodal Interaction
research community, of collecting and releasing robust datasets that
include both unimodal and multimodal user behaviors in various
contexts. For example, a search of the ACM Digital Library for
“multimodal dataset” published within the last five years at ICMI
yielded 32 results. Many of these datasets aim to solve problems
in passive affective computing by providing data streams from
physiological sensors like EEG, GSR, and heart rate [5, 32, 47],
RGB camera streams for facial and emotion recognition [3, 34, 40],
or combinations of these [30]. Not many datasets of active user
interaction episodes in modalities like gesture and voice/speech
are publicly available [12]. Those that do typically focus on human-
human communication episodes [8, 17, 54], even though the state-
of-the-art in multimodal interaction is far from allowing users to
interact with a system using the same communication strategies
they would use with other people [55]. Furthermore, to the best
of our knowledge, no multimodal datasets with voice and gesture
exist specifically for the context of authentication. Multimodal
authentication datasets have focused on wearable sensors or other
biometric modalities [9, 29, 31]. The MMGatorAuth dataset we
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Table 3: Averaged cross correlation score of intra-class and inter-class similarity for voice features.

MFCC LPC LPCC PLP
Phrases Intra-class Inter-class Intra-class Inter-class Intra-class Inter-class Intra-class Inter-class
Facebook 0.930 0.112 0.953 0.115 0.844 0.112 0.871 0.115
Message 0.929 0.110 0.925 0.135 0.870 0.153 0.879 0.135
Story2 0.924 0.103 0.912 0.117 0.839 0.116 0.867 0.112
Mail 0.921 0.100 0.877 0.114 0.842 0.192 0.877 0.114
Chair 0.920 0.098 0.862 0.133 0.846 0.172 0.870 0.133
Photos 0.918 0.095 0.866 0.102 0.828 0.139 0.878 0.122
Story1 0.916 0.093 0.868 0.131 0.805 0.109 0.872 0.105
Password 0.916 0.103 0.899 0.111 0.866 0.150 0.875 0.130
Story3 0.911 0.088 0.891 0.119 0.802 0.249 0.249 0.119
Grade 0.911 0.099 0.879 0.102 0.857 0.121 0.889 0.132
Credit 0.909 0.909 0.884 0.134 0.877 0.127 0.883 0.109
Doctor 0.907 0.085 0.864 0.094 0.849 0.119 0.888 0.123

Table 4: Averaged equal error rate score for voice features.

Phrases MFCC LPC LPCC PLP
Message 1.64%±1.05% 8.14%±1.60% 8.45%±1.47% 9.24%±1.25%
Bank 1.92%±1.11% 7.76%±1.83% 7.22%±1.37% 9.23%±1.24%
Credit 2.61%±1.34% 7.55%±1.23% 7.76%±1.77% 7.72%±1.34%
Chairs 1.60%±1.06% 5.46%±1.58% 6.75%±1.78% 7.56%±1.17%
Mail 1.55%±0.73% 7.72%±0.60% 7.07%±1.72% 7.54%±1.08%
Doctor 1.89%±1.03% 4.99%±1.32% 8.04%±1.72% 6.44%±1.42%
Facebook 0.87%±0.57% 6.99%±1.69% 7.12%±1.54% 685%±1.25%
Photos 1.55%±1.04% 838%±1.73% 9.0%±1.21% 9.56%±1.28%
Story1 1.41%±0.70% 9.80%±1.34% 11.90%±2.23% 9.42%±1.89%
Story2 0.97%±0.73% 6.21%±1.63% 7.70%±1.52% 9.13%±1.84%
Password 0.95%±1.10% 7.17%±1.59% 7.99%±1.23% 7.77%±1.01%
Grade 0.89%±0.77% 8.01%±1.07% 9.05%±1.97% 8.00%±1.33%
Story3 0.84%±0.69% 8.11%±1.34% 10.40%±1.48% 8.61%±1.92%

Table 5: Averaged classification accuracy for voice features.

Phrases MFCC LPC LPCC PLP
Story1 100% 100% 100% 100%
Story3 100% 100% 100% 100%
Doctor 100% 99.5% 100% 98.8%
Message 100% 99.0% 98.6% 99.0%
Story2 100% 99.0% 99.02% 99.0%
Facebook 100% 98.6% 98.8% 98.4%
Mail 100% 97.6% 97.4% 98.0%
Photos 100% 96.9% 96.7% 96.9%
Password 99.8% 97.9% 98.1% 97.9%
Bank 99.5% 99.05% 99.1% 99.05%
Grade 99.2% 98.6% 98.8% 98.8%
Credit 99.1% 97.6% 97.9% 97.3%
Chair 99.0% 94.3% 94.2% 94.8%

provide fills an important gap in the literature to enable research
into synchronous or asynchronous multimodal authentication with
smart environments in gesture and speech.

6.2 Voice-Based Authentication
Many advancements in the area of speaker recognition have been
made in the past two decades, demonstrating the effectiveness of
the technology [20]. This has been continuously demonstrated in
the National Institute of Standard and Technology (NIST) Speaker
Recognition Evaluations (SRE) [38], which have been performed
yearly since 1996. Various approaches to speaker recognition have
been proposed. Low level features such has Mel-frequency cep-
stral coefficients (MFCC), cepstral mean subtraction, MFCC, and
CMS derivatives, as well as pitch/energy averages, have been used
to represent differences in an individual’s speech during short ut-
terances [19]. In addition to these low-level features, high-level
features (linguistic measurements) such as word usage and pronun-
ciation have also been used in speaker recognition but are limited to
scenarios when recordings are long [50]. Researchers have recently
explored the application of powerful deep learning-based methods

to the problem of speaker recognition, opening new possibilities
[43].

6.3 Gesture-Based Authentication
Previous research on hand gesture recognition is mainly focused on
the classification of different gestures [62]. Relatively little research
investigates gesture-based user authentication. Fong et al. [18] and
Gupta et al. [21] used an RGB camera to perform authentication
with American Sign Language; however, their methods are limited
to off-line authentication within a restricted recording environ-
ment. Tian et al. [53] and Aumi and Kratz [1] both implemented
methods to track fingertips to match gesture trajectories. Wu et
al. [61] extracted hand silhouette features for the same purpose.
However, the gestures used in Tian et al. [53] are very complex
Chinese characters and Wu et al. [61] restricted gestures to those
captured within a small distance from the sensor. These restricted
in-air gesture commands may not be suitable for a real-time authen-
tication system. Also, all these researchers used relatively small
datasets recorded from fewer than 20 participants. Other previous
work on stroke-based gesture recognition for authentication has
collected more robust datasets from 50+ participants (e.g., [33, 48]),
but those datasets cannot transfer to hand gestures like the ones
we provide in MMGatorAuth.

7 LIMITATIONS AND FUTUREWORK
Our MMGatorAuth dataset fills an important gap in the literature
due to the current shortage of robust yet controlled multimodal
interaction datasets for smart environment applications. However,
the dataset does have some limitations. First, the population sam-
ple in this dataset includes only computer science graduate and
undergraduate students, who may not be representative of all users.
Future work could obtain more samples from a broader segment
of the population, including older adults, persons with disabilities,
or children. We encourage other researchers to help expand this
dataset by contributing samples collected from other populations.
The gesture and speech commands chosen for this dataset also
may be biased in favor of Western, English-speaking user groups.
Future work could collect data samples of different commands more
suitable for non-Western audiences. The commands in this dataset
were all scripted and given to the users to perform, in order to max-
imize the utility of this dataset for systematic recognition testing.
Future work could investigate user-defined multimodal authentica-
tion commands to understand user preferences and personalized
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adaptation in the target domain. Finally, we only present a voice-
feature authentication case study; future work could compare the
results achieved with our dataset to others reported in prior work
on authentication with Kinect-based hand gesture features, such as
Tian et al. [53] or Wu et al. [61], or multimodal features.

8 CONCLUSION
This paper presents a novel, large multimodal gesture dataset col-
lected from 106 volunteers of 10,600 gesture and 13,780 speech
commands. The original intended application for the dataset is au-
thentication in smart home environments, but the dataset might
be useful to any researchers who need a benchmark to evaluate
their gesture and/or voice recognition algorithms, two modalities
which have been studied less frequently in the literature recently.
We present the dataset collection method, dataset and feature char-
acteristics, and a case study illustrating how the dataset could be
useful to researchers. A download link for the full dataset is avail-
able here: https://init.cise.ufl.edu/downloads/.
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